
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THE DESIGN AND IMPLEMENATION OF A REAL-TIME
DISTRIBUTED APPLICATION EMULATOR

by

Timothy S. Drake

March 2001

Thesis Advisor:

Second Reader:
Cynthia E. Irvine

Jon Butler

Approved for public release; distribution is unlimited.

20010702 046

REPORT DOCUMENTATION PAGE Form Approved OMB No.
0188

0704-

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources gathering
and maintaining the data needed, and completing and reviewing the collection of information.
Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washing Headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY
Blank)

(Leave 2. REPORT DATE
March 2 001

3. REPORT TYPE AND DATES
COVERED

Master's Thesis
4. TITLE AND SUBTITLE
THE DESIGN AND IMPLEMENATION OF A REAL-TIME
DISTRIBUTED APPLICATION EMULATOR

5. FUNDING NUMBERS

6. AUTHOR(S)

Timothy S. Drake
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; Distribution is
Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis details the engineering, design and implementation of a real-
time, distributed, application emulator system (AE system). The project had
two main goals for the tool: emulation of real-time distributed systems, and
as a programmable resource consumer. The AE system is currently being used
in the HiPer-D test bed to activate a resource leveling tool that monitors
several software components for real-time response. The AE system is highly
flexible and can be used in the context of a variety of network topologies
and system loading options. The results presented show that the AE system
can also emulate distributed systems.
14. SUBJECT TERMS
Software Emulation, Real-Time Benchmarks,

15. NUMBER OF
PAGES 138

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICA-TION OF
THIS PAGE

Unclassified

19. SECURITY
CLASSIFICA-TION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

THIS PAGE INTENTIONALLY LEFT BLANK

11

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

THE DESIGN AND IMPLEMENATION OF A REAL-TIME DISTRIBUTED APPLICATION
EMULATOR

Timothy S. Drake
B.S., Colorado State University, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2001

Author:

Approved by:

Timothy S. Drah

ynthia Irvine, Thesis Advisor

0^.1.
/06n Butler/Second Reader

Michael W. Masters,
Chief Scientist, Advanced Computing Programs

Jeffrey B. Knorr, Chair
Department of Electrical and Computer Engineering

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

This thesis details the engineering, design and

implementation of a real-time, distributed, application

emulator system (AE system) . The project had two main goals

for the tool: emulation of real-time distributed systems, and

as a programmable resource consumer. The AE system is

currently being used in the HiPer-D test bed to activate a

resource leveling tool that monitors several software

components for real-time response. The AE system is highly

flexible and can be used in the context of a variety of

network topologies and system loading options. The results

presented show that the AE system also emulates distributed

systems.

v

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 2
B. AE SYSTEM REQUIREMENTS 5
C. ORGANIZATION 8

II. RELATED WORK 9

A. DYNBENCH 9
B. CARFF'S EMULATOR 11
C. PETRINETS 14
D. HARTSTONE BENCHMARK 15
E. MSHN 17

III. APPLICATION EMULATOR SYSTEM AND COMPONENTS 19

A. INTRODUCTION 19
B. PROJECT REQUIREMENTS 21
C. SYSTEM DESIGN 22

1. User Interface (UI) 23
2. AE Commands :..28
3. AEUnit 28

a) CPU Loader 29
b) Workload Module 35
c) Networking 36
d) AE Messages (Network Loading) 36
e) Memory 39
f) Message Table 40
g) CPU Job Table 41
h) Connection Table 42
i) Network, Send and Receive 46
j) Message Processing 54
k) Controller 56

D. SUMMARY 57

IV. SYSTEM EMULATION AND EXPERIMENTATION RESULTS 59

A. INTRODUCTION 59
B. EADSIM 59
C. SYSTEM EMULATION: THE THREE STEP PROCESS 61

/. Step One: Gather Resource Usage Data 63
2. Step Two: Using Profile Data to Construct AE Commands 64
3. Step Three: Running a System Emulation 72

D. EADSIM WRAPPER RESULTS 75
E. SUMMARY 83

V. DISCUSSION AND CONCLUSIONS 85

A. LESSONS LEARNED 85
B. FUTURE WORK 86
C. COMPARISON WITH RELATED WORK 87

vii

1. DynBench 87
2. Carff Emulator 88
3. PetriNets 89
4. Hartstone 90

D. CONCLUSION 92

APPENDIX A: AE COMMAND FILE FOR EADSIM EMULATION 95

APPENDIX B: AE COMMAND STRUCTURE 97

APPENDIX C: AUTOMATED EMULATION CONFIGURATION FILES 101

APPENDIX D: LIST OF ACRONYMS 103

APPENDIX E: DATA FROM A SERIES OF EADSIM EMULATIONS 105

LIST OF REFERENCES 115

INITIAL DISTRIBUTION LIST 119

VI11

LIST OF FIGURES

FIGURE l AE SYSTEM 23
FIGURE 2 AE UNIT BLOCK DIAGRAM 29
FIGURE 3 CPU LOADER FUNCTIONAL DIAGRAM 30
FIGURE 4 CPU LOADER TIME DIAGRAM 33
FIGURE 5 MESSAGE PATHS SUPPORTED 38
FIGURE 6 AE MESSAGE FIELDS 41
FIGURE 7 MESSAGE LAYOUT 48
FIGURE 8 EADSIM RUNTIME BLOCK DIAGRAM 61
FIGURE 9 EMULATION STEPS 62
FIGURE 10 TIME GRANULARITY EXAMPLE 67
FIGURE 11 AUTOMATED EMUATION DIAGRAM 74
FIGURE 12 EXPERIMENTAL RESULTS DIAGRAM (AVERAGES) 82

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

TABLE l EADSIM RESOURCE USAGE DATA 76
TABLE 2 CPU RESOURCE USAGE DATA FOR EADSIM 77
TABLE 3 NETWORK USAGE DATA FROM EADSIM 77
TABLE 4 TARGET AND EMULATION RESULTS 80

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

ACKNOWLEDGEMENT

Working on my Masters degree and thesis over two

thousand miles away from the NPS campus has been a

challenge. Without modern technology, I believe it would

have been close to impossible.

I would like to thank my professors: Cynthia Irvine,

Jon Butler and Debra Hensgen for their guidance and patience

during the writing of this thesis. They all have helped a

great deal, but special thanks goes to Professor Irvine who

volunteered to take me as a student after Professor Hensgen

left her position at NPS.

I have to add a special thanks to my wife, June and

family. June helped many times on the issues related to

writing a large document, but her best contribution was not

letting me give up on my degree under the pressures of work

and family.

XI11

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

I. INTRODUCTION

This thesis describes the design, implementation, and

evaluation of a software tool that is capable of emulating

real-time distributed applications. The tool is formally

known as the Application Emulator (AE) system, and the

primary goal of the project is to emulate Real-Time

Distributed Systems (RTDS). This is achieved by providing

software that can be easily configured to resemble a

particular application, chosen from a wide range of real-

time applications. The AE system is not meant to provide

the functionality of real-time applications, but rather to

imitate the resource usage patterns of such applications.

The AE was developed using an iterative process. Some

iterations added functionality to the AE and allowed the AE

system to emulate a wider range of RTDS. Other iterations

concentrated on generalizing the design, emphasizing the

concept of software reuse. These iterations tended to

simplify the design. The final design has a scalable

architecture that can be configured to emulate RTDS

containing many components, each perhaps executing on a

different system, and each perhaps having real-time

deadlines.

A. MOTIVATION

The research performed for this thesis contributes

substantially to the Naval Surface Warfare Center's (NSWC)

High Performance Distributed (HiPer-D) computing project.

The HiPer-D project is currently developing a prototype,

next-generation high performance Anti Air Warfare Weapon

Control System (WCS). The project is focused on determining

whether Commercial Off The Shelf (COTS) systems can meet the

real-time, scalability and fault tolerance requirements of

such applications. If successful, the move to COTS will

offer several advantages over dedicated systems including:

• lower software and hardware costs,

• higher performance (faster computationally)
computers in terms of processing power,

• reduced hardware upgrade times, and

• user familiarity with interfaces and components.

The move to COTS to support these applications

represents a major paradigm shift. The currently fielded

set of WCS applications is supported by special-purpose,

dedicated hardware (i.e., computers). The communication

between components is supported by point-to-point dedicated

connections. The set of fielded applications comprises a

large and complex entity. The prototype, currently being

developed and analyzed in the HiPer-D laboratory at NSWC,

while also large, does not encompass the entire

functionality of the fielded application. Adding the full

functionality to the existing laboratory code would require

a substantial investment. Therefore, an AE system that can

be configured to accurately emulate the software components

that are part of the fielded system but are not part of the

prototype would aid in analyzing the suitability of COTS for

these applications at a fraction of the cost. An AE used in

this context must accurately mimic the loads that would be

placed on the computing and communication resources by the

missing components.

Part of the HiPer-D mission is to determine whether the

next generation WCS can meet its requirements if implemented

using COTS components. Furthermore, if the current COTS

systems do not meet the needs of such applications, the

HiPer-D project must identify the areas of today's

technology that fail to provide such support. Finally, when

such areas are identified, the project may also suggest

avenues for new COTS technologies that will better meet

Navy's application requirements.

This motivation helps explain the basic requirements of

the AE project. An application observed from an external

vantage point has a CPU usage pattern (or profile), a

network usage pattern, and a memory usage pattern, in

addition to usage patterns for some less obvious resources

such as file server access. The main goal of this research,

therefore, is to design and implement software that can be

easily configured to accurately imitate the resource usage

patterns of WCS software. Obviously, the algorithms that

will be used by next-generation WCS may be different from

those used in today's systems. Therefore, the AE must be

able to imitate not only the usage pattern of today's WCS

applications, but tomorrow's as well.

The algorithms used in WCS applications will likely

change over time, yet based upon existing WCS applications

[T3] , it is clear that any algorithm that performs weapon

control will fall into a class of applications known as

periodic, real-time applications. The main characteristics

of this class of applications are that they repeatedly

receive sensor or pre-processed information, execute one or

several filtering-type algorithms, and report an answer

before a deadline. Such applications are both CPU and

network-intensive. Therefore, the design for this AE

project has focused on two main areas: the ability to

replicate CPU usage patterns and the ability to replicate

network usage patterns. Additionally, the temporal

relationship between these two uses must also be replicated.

As part of this thesis, we discuss how this design may be

expanded in the future to include replicating usage patterns

for other resources.

Using the AE system, together with the components of

the next-generation WCS that have already been implemented,

will provide a higher level of confidence concerning

conclusions about the ability of COTS to support the next-

generation WCS. Without the AE system, or alternatively the

costly implementation of the rest of the functionality of

the application, the adequacy, strengths, and weaknesses of

the COTS system might be unknown. For these reasons, the AE

is an important tool for the HiPer-D project.

B. AE SYSTEM REQUIREMENTS

The AE system was designed and built to emulate RTDS.

As such, it has the following high-level requirements:

• Its architecture must be both distributed and
scaleable.

• It must be written in a language that is portable,
supports multiple threads. It must be designed to
reduce life cycle costs.

• It must be capable of being configured to emulate
real-time applications that have periodic deadlines.

• It must be possible to determine whether performance
requirements, such as deadlines, are met.

• It must produce similar resource loads when run
repeatedly with the same parameters. In particular,
it must produce repeatable CPU and network usage
patterns.

Compliance with the above requirements is discussed below.

The AE system must be able to mimic applications

comprised of many components, although the separate

components may execute on different systems. In other

words, the AE must consist of components that can be

replicated, individually configured, and distributed. The

current requirement is that the AE must be able to mimic the

operation of an application consisting of at least twenty

different communicating components, which may be running on

any number of systems that support the defacto LAN standard,

TCP/IP.

The second requirement is that the emulator must

include a wide range of features. Although many other

modern languages meet the language requirements of the AE

project, the decision to develop the AE in Ada95 was largely

due to a previous Navy requirement that stipulated the

programming language that must be used for Naval real-time

applications.

The third requirement deals with the real-time

characteristics of the AE project. For the purpose of this

thesis, we will use the two terms hard real-time and soft

real-time as they are commonly used in the literature. A

component with hard real-time deadlines must complete its

periodic work before the deadline for each period in order

to satisfy system requirements. Soft real-time applications

meet their requirements if the statistical mean of the

sample distribution of response times satisfies the deadline

constraints [Lui73] . For the purpose of this thesis' s AE,

hard real-time constraints were interpreted to mean that

missed deadlines must be reported. In many applications

with real-time periodic deadlines, the deadline of the

previous period is also the start of the next time period

[Hart89].

In order to meet the last requirement described above,

the AE must have a repeatable way to apply a load to the

network and the CPU, as well as to other resources. The

networking load requirement requires that the AE must be

configurable to allow the components to send and receive

messages to one another in such a way that the dynamic

message-passing topology can easily be specified. The CPU

loading specification should ideally be independent of the

speed and instruction set of the processor.

C. ORGANIZATION

The remainder of this thesis is organized as follows:

Chapter II contains an overview of related work. Chapter

III discusses the details of the AE and its components. It

covers the desired features of the AE, first at a system

level, and second it includes a detailed discussion of the

components in an AE unit. Chapter IV provides an analysis

of the AE system including an overview of the emulation

steps. The chapter includes a section on the application

being emulated (EADSIM). The chapter finishes with a

section on results optioned and an analysis of the AE

system. Chapter V concludes the thesis by discussing some

lessons learned while developing the AE, by suggesting

future work for the AE, and, by contrasting the AE with

related tools for real-time system emulation.

II. RELATED WORK

This chapter describes several simulation and emulation

tools that are closely related to the AE system. A

comparison between the tools discussed here and the AE is

presented in Chapter V after the reader has had an

opportunity to read Chapters III and IV and has a clearer

understanding of the AE system.

A. DYNBENCH

DynBench [WELC98] is a benchmark suite that was

designed to emulate a portion of the prototype next

generation Anti-Air Warfare, or, as it is better known,

HiPer-D [T3] . Therefore, DynBench is a real-time

distributed system with Quality of Service (QoS)

requirements. Just like HiPer-D, DynBench is a system that

allows certain software components of its distributed system

to be relocated during operation. Relocating a software

component means moving it from one computer to another

computer. Relocation of runtime components is a feature

that requires an outside action (i.e., some other software

component to act on resource data, and to actually kill and

restart the DynBench components being moved) and is normally

in response to problems related to loading or faults1. For

example, any or all the components that make up a DynBench

run-time system can be relocated while DynBench is

operating.

DynBench maintains Quality of Service (QoS) data and

provides an Application Programming Interface (API) to allow

a Resource Management System (RMS) or some other process

access to the QoS data. This data can be used for

intelligent run-time adaptation.

The primary load on a DynBench system (and the tactical

systems that it emulates) is a function of the number of

objects, or radar tracks in the radar view. Radar tracks

have various attributes such as speed, heading, and

identification, i.e., friend or foe. DynBench provides two

methods for changing the track load. The first is based on

time, where the number of tracks in the system is increased

or decreased as a function of time. The second allows the

number of tracks to be instantaneously changed by an issuing

interactive command.

1 A fault can be a computer system that fails or a network
segment that also fails and causes a computer system to be
isolated.

10

Other characteristics of radar tracks that DynBench

must account for include initialization (where they start)

and heading (where they are going). These characteristics

are important when studying a tactical system, but are much

less important if one is using DynBench as a loading tool

and not as a tactical system.

The DynBench benchmark suite uses simulated data in its

messages and processes this data with accepted algorithms.

In contrast, most real-time benchmarks use a synthetic

workload2 created by calling existing CPU loading benchmarks

(e.g., Whetstone) for workloads. This places DynBench

somewhere between a general-purpose benchmark and an actual

system.

B. CARFF'S EMULATOR

Paul Carff [CARF99] performed research aimed at

determining how much data are needed about an application's

run time resource usage in order to predict how it will

perform on different platforms (i.e., different processor,

memory and operating system configurations). Collecting the

2 A synthetic workload is a nonreal-world program that
usually exercises one aspect of a system. An example is the
Whetstone benchmark that performs operations on floating
point numbers.

11

right amount of resource information is a difficult problem.

If not enough information is obtained, then the resulting,

prediction may be incorrect by more than an acceptable

percentage. Large amounts of data can put a strain on the

run-time performance of the system under study and increase

the problem of managing and processing the data. The

optimum level of data collection should allow prediction to

occur within a certain level of accuracy (e.g., plus or

minus 10%) at some level of consistency (e.g., 90% of the

time).

The application Carff utilized was a distributed

message passing application that allows for a configurable

number of components. Systems such as MSHN (section II.E)

are designed to use runtime data similar to that collected

by Carff to predict resource requirements, and, when

possible, completion time estimates for applications. MSHN

was intended to use this information to decide where an

application should run, while accounting for many factors

including:

• the deadline of an application,

• the current state of the system, and

• other pending jobs.

12

Carf f developed an emulator to validate his thesis.

His emulator, developed in Java, contains four modules, each

of which is always executed within its own thread. A brief

description of each module is given below.

• Main. This module receives the information needed
to configure the other three modules. It also must
wait until the other modules complete before
exiting.

• Calculation. This module performs the CPU loading
by multiplying two 100 x 100 matrices. It instructs
the sending modules to send messages based on either
a fixed interval or a statistical distribution on
the progress made in finishing the multiplication.

• Sending. Each instance of Carff's emulator has a
send thread for every other emulator in the test.
If there are n (e.g., n=5) copies of the emulator
running then each will have (n-1) copies of the send
module (e.g., 4). Each module sends messages to
only one remote emulator.

• Receive. This module is very similar to the Send
module. Each emulator will have n-1 copies of the
receive modules running. Each receive module is
dedicated to receiving from a single remote sender.

The emulator runs until all threads have completed

their work. This work includes reception of all messages

and, of course, finishing work that emulates CPU loading.

Only when the calculation, and receive and send threads have

completed will the main module terminate.

13

C. PETRI NETS

Petri nets can be used as a tool for the indirect study

of a system [PETE81] . The first step to utilizing Petri

nets is to create a model of an existing system by

incorporating all important features of that system into the

model. Then, the model, which is mathematical in nature,

can be analyzed to learn more about the actual system.

Many different systems can benefit from this indirect

method of study. There are many cases when the Petri net

method can work better than studying the actual system. For

example, astronomy (where the times involved in the actual

system are too great) and sociology (where studies might

cause ethical problems) are eminently suitable for studies

via Petri nets [PETE81]. The DynBench benchmark suite is an

example of a model representing a system that is not readily

available for experimentation since the software is

considered proprietary and sensitive (for national security)

in nature. The operating signature (resource utilization of

the COTS components) does not have the same level of

classification and can be used in the model.

14

Well-constructed models are necessary for useful Petri

nets. If a model is poorly constructed then the resulting

conclusions can and probably will be incorrect. If a model

is well constructed and correctly represents the major

features of the real world system, then the Petri net study

can yield usable results. The interaction between the

components (which may be large complex systems themselves)

must be preserved in the model. Each component of the

system has a separate behavior as well as an interaction

with the other components. That behavior may change over

time and/or events (the current state).

D. HARTSTONE BENCHMARK

Hartstone is a real-time benchmark suite. It was

initially proposed as a specification [HART89] for a

benchmark suite, but later was developed into a working

tool. The premise of the Hartstone benchmark is that

developers can prototype a proposed real-time system, and

then execute that prototype on the intended computer

hardware. This allows the designers to quickly see how the

actual system will perform within some margin of error when

fielded. Before Hartstone, developers would either wait

15

until the system was built or would have developed a

prototype themselves in order to test system response.

The Hartstone Benchmark provides a series of tests to

conduct on a real-time system [HART89] . The five tests

defined by Hartstone [HART8 9] are given below:

• PH Series: Periodic Tasks, Harmonic Frequencies

• PN Series: Periodic Tasks, Non-Harmonic Frequencies

• AH Series: PH Series with Aperiodic Processing Added

• SH Series: PH Series with Synchronization

• SA Series: PH Series with Aperiodic Processing and
Synchronization

Harmonic frequencies means that all the periodic tasks

have a common base frequency. The task with the shortest

time period, operates at the base frequency. All the other

task's periods are some multiple of the base frequency. For

example, if a system includes three tasks, and they have the

following periods: Task One is one second, Task Two is two

seconds and Task Three is four seconds, then these tasks are

harmonic with a base frequency of one second (i.e., Task One

is the task that runs at the base frequency) . When the

tasks are synchronized and harmonic they all start at the

same time, so every fourth second all three tasks will start

an execution cycle.

16

A test utilizing the Hartstone benchmark continues

until the system misses a hard real-time deadline. If,

during the first run of the system all hard deadlines are

met, then one part of the system is changed to make meeting

the deadlines during the next run more difficult. This

continues until the system fails to meet a hard deadline.

The Hartstone benchmark is intended to measure the breakdown

point of a real-time system [HART92]. Hartstone benchmark

results allow a real-time system designer to know before

software development if the end product could operate as

specified in terms of real-time response.

MSHN

The Management System for Heterogeneous Networks (MSHN)

was a research project to develop a Resource Management

System (RMS) . One goal of a RMS system is to make a set of

distributed computational resources (heterogeneous in MSHN's

case) look and act like one virtual machine [HENS99] .

Distributed Operating Systems are also tools that attempt to

make a set of networked machines look like one virtual

system. One major difference between a RMS and a

distributed operating system is that the RMS does not manage

system resources. That task belongs to each local operating

17

system. Thus, an RMS provides a mechanism for intelligently-

assigning applications to a computing system selected from

set of computing resources.

One objective of MSHN was to attempt to meet QoS

requirements by supporting adaptive applications [HENS9 9].

Adaptive applications allow for different levels of fidelity

in the output. For example, directions to a local airport

can be delivered as a color map, a black and white map, or,

in the simplest case as an ASCII description. If the

completion time is critical, then meeting that deadline (in

this case, perhaps catching a plane) is the primary concern

and the quality (in terms of display) of the result is

secondary. The intended MSHN , goal was to meet deadlines

with the best quality results, but if available resource

levels would not permit the deadline to be met, then to

adapt one or more of the applications so that the deadline

could be realized.

The adaptable features described for MSHN appear

promising for future applications. The idea of applications

that dynamically adapt themselves through tools like MSHN,

allowing several competing applications to all meet their

deadlines, would be a major advancement over today's static

software systems.

18

III. APPLICATION EMULATOR SYSTEM AND COMPONENTS

Chapter III has the following organization. The

introduction contains a high level overview of the AE

system. Section B, contains background information and the

constraints on the AE project. The chapter finishes with a

section giving the functional block diagram of an AE unit.

This section also contains a detailed description of the

components that make up an AE unit.

A. INTRODUCTION

In developing the AE, the primary goal was to keep the

components of the AE unit fairly generic and flexible.

Although this may seem to constrain the capability of the AE

system, it will be shown that the AE system can emulate a

large Real Time Distributed System (RTDS). Large system

emulation is possible because each AE unit can mimic most

real-time components and large systems can be constructed by

interconnecting them in a wide range of topologies.

In the HiPer-D program one of the early needs for an

emulation or simulation tool was to place additional load on

partial implementations of large real-time systems. In this

role, the AE system would emulate missing or unfinished

19

components that are part of a larger system. Its role would

be to emulate the missing component's resource usage profile

and thereby create the illusion of having the component

present. The resulting system, consisting of actual code

and the AE system, can then be studied. The ease of

modifying the AE system usage profile allows a wide range of

tests to be conducted much like a Monte Carlo simulation.

In this role, the AE system is utilized as a tool for

quickly prototyping real-time components.

The CPU cycles consumed by an AE unit can be divided

into two areas, overhead and emulation. The overhead CPU

usage is introduced by the AE as it executes an emulation

and is a necessary aspect of any emulation package. The AE

system, at a system and component level was carefully

designed and coded to minimize CPU processing while

maintaining a acceptable level of functionality. The CPU

emulation, which is central to application emulation, is

accomplished by placing a synthetic workload on a system.

Each AE unit provides the ability to emulate the

resource utilization of the following system resources: CPU,

network and memory. The rest of this chapter will cover the

detailed requirements and the design of the Application

Emulator. Further, it will show how the design and

implementation meet the requirements.

20

B. PROJECT REQUIREMENTS

The initial goal of the AE project was to provide an

application emulator that could mimic the resource

utilization of existing or planned real-time applications.

A working group from the HiPer-D project formulated the

following high-level requirements for the AE development

program:

■ It must be written in a high-level language such as
Ada.

• It must allow configuration via a centralized
controlling unit.

• It must include a realistic CPU loading capability.

• It must support emulation of periodic real-time
processes with deadlines.

• It must include emulation for transient periodic
real-time processes.

• It must support a complex message passing capability
that includes performance metrics.

• It must be written such that it can operate in a
heterogeneous environment.

• Each experiment must be repeatable.

• The metrics provided must be useful for performance
(i.e., loading) tuning.

• In general, it must provide the ability to simulate
processing and communication workloads on multi-
computer networks.

21

C. SYSTEM DESIGN

This section gives the reader an overview of the AE

system's design, and insight into how that design meets the

requirements of the AE project. First, we will start by-

looking at how the AE system operates, and then dissect an

AE unit, with a detailed description of its components.

Figure 1 illustrates a prototypical AE system: one or more

AE units and a User Interface (UI) . The most important

component of an AE system is the AE unit, which is the

emulator engine that emulates real-time software

components.). This diagram is similar to the system used

for experimentation to be discussed in Chapter IV.

Each AE unit in Figure 1 can be located on any computer

and operates independently of the other AE units, so all

three AE units in Figure 1 could be located on the same

computer or three different ones. To change the experiment

and move an AE unit to a different computer only requires

changing the platform where each AE unit is started. It is

worth noting that the example in Figure 1 does not account

for network traffic between the AE units. In a typical

RTDS, network traffic would be present.

22

Emulator
cmds

Command file

AEunit AEunit AEunit

I
Log_file

Data file

I
Log_file

Data file

I
Log_file

Data file

Figure 1 AE System

The rest of this chapter describes how the AE system

operates.

1. User Interface (UI)

Emulation using the Application Emulator (AE) system

consists of the objects shown in Figure 1: Command file,

User Interface (UI) and one or more AE units. The UI is a

multi-threaded application whose main task is to control the

execution of a group of AE units operating as a RTDS. The

command file contains a list of commands that give each AE

unit its resource usage profile. The command file drives

23

the emulation by providing the resource usage information

and, in addition, provides a method for specifying precise

timing of resource utilization.

As shown in Figure 1, the UI plays a major role in the

execution of the AE system. The procedure for starting all

the AE units and the UI for an experiment is described

below. After an experiment starts, the UI reads and

processes the command file. Each command in the command

file contains a field, which specifies a particular AE unit

by name. These commands contain the information that

controls what resource and the amount of each resource each

AE unit will use. Different command files allow the AE

system to emulate an entirely different system.

The UI satisfies several of the high-level requirements

for the project. It provides the centralized control and,

by employing the command file, provides for repeatable

experiments. The UI also allows the AE system to be

scaleable (easily supporting many AE units in an

experiment), while also supporting the distributed

architecture requirement.

The startup procedure for the AE system can aid in

understanding how it operates. Each AE unit is known by its

name, a string of up to 14 characters. Use of names to

identify and establish connections in the network, allows an

24

AE unit to be executed on any computer system on the Local

Area Network (LAN). Starting the applications manually (the

UI and the AE units) on several different computers is a

multi-step process. To save time and reduce mistakes, an

automated startup tool that greatly simplified the otherwise

labor-intensive task of startup was borrowed from the

DynBench project. The startup task involves one UI and one

or more AE units.

There are two initialization (i.e., command line)

parameters of interest for the UI. The first specifies the

mode of operation: interactive or batch. The default mode

of operation is batch in which commands are processed from a

file, but for testing and flexibility, an interactive mode

is available. The interactive mode includes a tool that can

help a user to construct the lengthy AE commands. The

second is an optional parameter that specifies the number of

AE units that will be part of the experiment. This

parameter instructs the UI to wait until that number of AE

units has connected to the UI (via TCP/IP) before processing

commands. After the last AE unit creates a connection with

the UI, it starts processing the command file. The UI also

records the start time, which is used for Quality of Service

(QoS) data and for commands that require timing (described

below).

25

There are four types of commands and all of them

support an optional time field parameter. This option is

available in both modes of operation (interactive and batch)

but would be difficult to use effectively in interactive

mode, since interactively constructed AE commands are likely

to execute late. Part of the process of parsing commands

includes checking for the time parameter. If the time field

is present, then the UI must determine if the command is to

be executed immediately or later. This calculation is made

by comparing the elapsed time and the command's time field

parameter. Elapsed time is defined as the current time

minus the start time. If the current command needs to wait,

then the UI suspends execution until the time field and the

elapsed time are the same; at this point it sends the

command to the intended AE unit. Because the command file

is processed from top to bottom, all commands that follow

one with the time parameter specified must also wait until

it is processed.

An AE unit supports several command line parameters,

but, for normal operation, only two are significant. The

first one specifies the AE unit's name. The second one is

the name of the host where the UI is executing. This

information allows this AE unit to make a network connection

with the UI. The mapping of an AE unit name to IP address

26

takes place at run time and as stated above allows AE units

to be executed on different computers for different

experiments while using the same command file. The name

information is stored in the connection table, which is

described in detail in Section III.C.3,h). The connection

table is replicated on the UI and at each AE unit. This

feature allows an AE unit to be easily extended so that it

can be moved during runtime (this extension is not yet

implemented). The table includes enough information (i.e.,

AE unit names and IP addresses) so that each AE unit can

create a network connection with any other operating AE

unit.

In summary, the UI plays a major role in the overall

operation of an experiment. It can be used to synchronize

the startup process, and, because it records the start time,

it also allows for the precise timing of individual

commands. The UI's architecture and implementation allow

centralized control. Centralized control and the naming

feature allows the individual AE units to be located

anywhere. The UI ends an experiment when it encounters the

"stop all" command. It forwards the command to all the

participating AE units, informing them to perform a normal

shutdown.

27

2. AE Commands

The AE supports four types of commands. Each command

in the command file is one of the following types:

• CPU command,

• network command,

• memory command or

• control.

The first three command types are used to specify resource

loading for a particular resource. The command structure

developed for the AE system is shown in Appendix B and an

example is included in Appendix A. The control command type

is used for shutting down the system after an experiment or

test has completed.

3. AE Unit

Figure 2 depicts all of the major internal modules of

an AE unit and most of the interactions between the modules.

All the shaded objects represent a process thread. As

shown, the AE is a multi-threaded, complex application. Its

components include: message table, connection table, network

modules (i.e., send receive and a general networking

module), CPU job table, monitoring, message processing, CPU

28

loaders, benchmarks, controller and the memory loader. The

rest of this section describes each AE component.

Network Connection
to User Interface

Figure 2 AE unit Block Diagram

a) CPU Loader

Figure 3 is a diagram showing how a CPU loader

operates. It is important to note that, for real-time

processes, the main loop will operate forever (until it is

stopped) and not a specified number of times. The CPU

Loader along with the workload module emulates the CPU

workload of periodic, aperiodic, or transient periodic real-

29

time processes. Each AE unit has the ability to support

multiple, concurrent executing CPU loaders.

Main Loop

Record time

Inner Loop

Call Workload (Probability_function (workload info))

Send Message

End Loop: (1 to Repeat count)

Sleep until next start time

End Loop: (1 to Infinity)

Figure 3 CPU Loader Functional Diagram

The CPU loader module has several features that

need explanation. The call to the workload module causes

CPU emulation to be performed. The item labeled "action"

drives the network emulation capability. The term "action"

and how it applies to network emulation is described below.

30

The last feature is the repeat count; this feature allows

each instance of a CPU loader module to have specified both

a period and a repeat count. For example, if a CPU loader

was defined with a period of two seconds, a repeat count of

four and an action to send a message. It would operate as

follows, the main loop would start every two seconds. The

inner loop would iterate four times for each main loop

execution. Each time the inner loop executes it would call

the workload module and, because an action is defined, it

would also send a network message. Therefore, every two

seconds the loader would call the workload module four times

while also sending four messages. The sequence described

above is also shown in the timing diagram shown in Figure 4.

The term action as it is used in this thesis, is defined as,

"linking CPU processing to the loading of other resources",

such as sending a message after completing a defined

workload. In the general case, real-time components

complete the same task repeatedly in a periodic (e.g., every

second) nature. The repeat parameter allows a periodic CPU

Loader's period to be divided into segments so that an

action can occur several times in a single period (as

diagramed in Figure 3) . The parameters listed below are

configurable at CPU loader initialization time:

31

• real-time period (in milliseconds),

• benchmark (Whetstone or Dhrystone),

• workload data: average, and distribution parameters
(e.g., distribution parameters can be mean and
variance),

• action and action probability (for example the
action is taken 60% of the time), and

• repeat value (allows actions to occur several times
in a single period).

Each CPU loader task maintains the following

Quality of Service (QoS) data:

• deadlines: missed and met, and

• message end-to-end timing information.

The CPU loader modules can operate in either a

periodic or an aperiodic manner. Figure 4 illustrates a

loader module as seen by someone tracing its execution

through a single period.

32

Start
time

Time
 ►,

St
tin

T i

1 1 1 1 k /

I I CPU Workload

,-

Sleep Time

Sending Message

Figure 4 CPU Loader Time Diagram

Figure 4 shows a periodic CPU loader operating

with a repeat value of four and an action to send a message

(note, that in this example the probability to transmit a

message is 100%). Remember that real-time applications

operate in a periodic fashion, wake up, process, sleep, wake

up, process sleep, etc. Here, periodic means that the start

times are uniformly spaced in time. The above diagram is a

snapshot of such a process, and moving ahead, or back in

time will produce a similar diagram with evenly spaced start

times. The diagram shows the loader first simulating CPU

usage followed by the transmission of a message (through an

action) . The above sequence is executed four times in the

33

diagram, at which time the loader has finished its CPU and

network emulation for the execution cycle. It will then

suspend execution until the next cycle is due to start.

When a CPU Loader starts a new execution cycle, it

first calculates the CPU workload using the average and

statistical distribution data. The data used in the

calculation are contained in the AE command that describes

the CPU loader. Workloads can be described as normal,

uniform or exponential statistical distributions. Next, a

time stamp is recorded to allow for QoS measurements. The

workload information is then sent to the benchmark module to

emulate CPU loading. As an example, this module might call

the Whetstone Benchmark to simulate CPU loading, or workload

as it is referenced in this thesis. Each action has an

associated probability (0% to 100%) that is checked before

the action is executed. So, if an action is defined and if

the probability test passes, a call to the "network send"

(sending a message is the only implemented action) module is

made with the information needed to construct the size and

type message being sent. If a repeat value is set, then the

process described above is repeated for the specified number

of times. Finally, the next start time is calculated. If

the next scheduled start time has passed, then a deadline

was missed. The loader records the event (deadline missed),

34

and starts the next iteration. If the deadline was met, the

loader will issue a sleep command to consume the remaining

time.

b) Workload Module

The main function of the workload module is to

emulate an application's CPU resource utilization. To

accomplish this task the AE uses a list of commonly

available benchmark programs, which provide a synthetic

workload. The list of benchmarks supported includes a small

Whetstone [CURN76] and a Dhrystone [DHRY84] benchmark.

These two benchmarks were selected because they represent

computationally intensive workloads and the class of

software being emulated (real-time distributed) normally can

be characterized as having the same characteristics. For

completeness and flexibility, the design and implementation

of the AE allows additional benchmarks to be easily added to

the existing set.

35

c) Networking

The AE system has been developed to emulate

existing and/or planned RTDS. In that environment, some

applications only process messages; their workload is a

function of the number and type of messages that they

receive. A message received by an AE unit can contain

workload information. Details of message content and how

messages are processed by an AE unit are fully explained in

a subsequent section (Message Processing III.C.3.J).

d) AE Messages (Network Loading)

An AE message consists of several data fields,

name fields (i.e., AE names), and QoS fields which contain

timing information. The name fields contain the originator

and all the receivers of that message. The names define the

arcs that a message takes through an AE topology and

determine what communication connections are required to

support that message. Four different message path types are

supported by the AE project: simple, fan out, pipeline and

circular pipeline. They are illustrated in Figure 5 and

36

were selected because they encompass most of the

communication functionality found in modern large real-time

distributed systems today. The more complicated message

types (pipeline, fan out and circular pipeline) can have up

to five receivers. Five was selected because it was large

enough to allow the AE to emulate the most complex message

passing used in the HiPer-D prototype. A larger number was

not selected because each message transmitted between AE

units carries the entire data structure required to support

all the features of the networking subsystem. The overhead

of supporting up to five receivers, adds 3 00 bytes to each

message. A larger number would have increased the overhead

-of the AE.

All commands (from the command file) are processed

through the UI and then passed to an AE unit as described in

the UI Section III.C.I. Message commands require an

additional parsing step by the UI to decode the message type

and to extract all sender and receiver information. The

sender and receiver information is then sent to the affected

AE units to inform them of the required network connections.

The following parameters are set when defining a message

(when creating an AE network command):

• message type: simple, fan out, pipeline or circular
pipeline

37

• message information: size and message size
statistical distribution parameters (e.g., size mean
and variance)

• protocol (UDP, TCP) and port number

• the number of receivers and their names

• unique workload information for each receiver of
this message including which benchmark to use for
CPU emulation.

Sinple: A B

Fan out:

Pipeline: A t B b C t D w V w

Circular
Pipeline:

A

t
b B t C ^ D w V V

Figure 5 Message Paths Supported

38

e) Memory

The memory emulation capability provided by the

memory module uses a rudimentary approach. The minimum

memory consumed by an AE unit is approximately one megabyte

of memory. Memory usage is emulated by allowing an AE unit

to expand its total memory usage. There are two commands

for memory emulation: one that adds to the current size of

an AE emulator and an other that decreases the emulator's

size (this command must be preceded by a command that

increases the size). Reduction in memory size cannot go

below the actual size needed for the AE unit itself. For

example, if a particular AE unit was emulating an

application that has a run-time size of 3.5 megabytes, then

the AE would need to add 2.5 megabytes to its memory

allocation to use the same amount of memory. The AE

emulates the application memory footprint and not its memory

access.

Memory is merely allocated is not used or accessed

in any manner by an AE unit. Normally applications allocate

memory for a reason, and they normally use that memory for

code or data.

39

f) Message Table

AE units store network messages in the message

table (see Figure 2) . When the UI processes a network

message, the UI sends a copy of that message to the message

originator (i.e., the AE unit that will initiate the sending

of that message) . Remember that an AE system can, in

theory, support a very large number of messages, and the

discussion below describes a single message. All messages

are static in that they always start from the same AE unit

and traverse the same ordered set of AE units. The

originating AE unit receives a copy of the message from the

UI via the controller as shown in Figure 2. That AE unit

then inserts that message into its message table. The

actual transmission of the message requires the send module

(see Figure 2) to obtain a copy of the message from the

message table.

Figure 6 shows the data structure common to all AE

messages. At the top of the diagram are the fields that

define the number of receivers and the type of the message

(see Figure 5 for a full list of types) . This is followed

by the workload data structure. The workload data structure

contains the topology information (contained in the AE Name

field) and the workload information for each receiver of the

40

message. The Action data structure at the bottom of Figure

6 is optional. That field defines an action (where "no

action" is a valid option) and the probability associated

with actually executing the action.

Workload data
structure

Number of receivers (1 to 5)

Defines the number of

AE Name (receiver's name)
workload data structures
needed. ^

Workload Distribution

Workload data structure, five of
these exist in every message,
only the needed ones are filled in.

Workload value 1 (i.e. mean)

Workload value 2 (i.e.variance)

Benchmark (i.e. Whetstone)

Action data
structure

Action Flag

Action data structure, one of
these data structure exist in every
message.

Action choice (i.e. start CPU Loader)

Action value 1 (i.e. job id)
<

Action value 2 (i.e. % Probability)

Figure 6 AE Message Fields

g) CPU Job Table

Periodic and aperiodic tasks are emulated using

CPU loader jobs. CPU commands take the same path as network

commands, proceeding from the command file, through the UI

41

to the appropriate AE unit. Most CPU commands become CPU

loader jobs when they are received, but some are started

and/or stopped by events (i.e., transient periodic

processes). The job table is where event processing obtains

the parameters to configure and start a CPU Loader process.

h) Connection Table

Each AE unit maintains its list of active network

connections with other AE units in the connection table.

New connections between AE units are created only when

required by a network message command. For example, if a

new message is defined that goes from the AE unit named "A"

to "B", then "A" and "B" consult their connection table

looking for an existing connection using the same protocol.

The supported protocols are TCP and UDP. If one exists,

then no action is required. If, on the other hand, a

connection does not exist, then a new one is created and

information about the AE name, IP address and the network

channel number is inserted in both parties' tables.

The circular pipeline message passing construct

(Figure 5) was added late in the development process of the

AE system. The existing networking code for the project

42

contained a few weaknesses and a bug surfaced when the

circular pipeline construct was added. To explain the

problems requires a basic knowledge of how a TCP connection

is created. This will be outlined below.

TCP is a connection-oriented protocol. For two AE

units to establish a TCP connection, one side (the server

side) must create a socket and then "listen" on that socket

for connections. Meanwhile the other AE unit (the client

side) must also create a socket and then through that socket

it attempts to connect to the server side (using IP address

and port number). Timing is a critical aspect in the above

sequence of events. For example, if the client attempts a

connection before the server is ready and listening, then

the client's connection attempt will fail. On the server

side, the listener will wait indefinitely for a connection

unless special socket options are used to cause a listener

to time out.

The earlier code for the AE project attempted to

deal with the problems listed above by using less than ideal

solutions. The old technique used, described below, gave

the server side of a network connection a small time

advantage over the client side. The time advantage was

provided by the UI's action of sending server side

connection requests to the AE units before the corresponding

43

client side connection requests. For each arc in a

message's voyage (see Figure 5), the UI would send two

connection requests commands, one for the receive side

(server side) and one for the sending side (client side).

For example, a circular pipeline message with three AE units

(i.e., A -> B -> C and back to A) would produce six

connection request messages from the UI: three send and

three receive. Each AE unit for the circular pipeline case

just described would receive two connection requests: a send

and a receive request. This usually worked by allowing the

server side "some" extra time to establish its socket before

the client side attempted to complete the connection. The

advantage of starting earlier usually solved the timing

problem, but because it did not eliminate the timing issue,

the code occasionally failed.

The circular pipeline was added, because, without

it the AE system did not easily support two way

communications. The most common form of communication is

two applications communicating. For example, "A" sends a

message to "B", "B" processes the data and sends a response

back to "A" . The circular pipeline made this (and more

complicated communication topologies where the originator

receives a response back) much easier to construct.

44

The addition of the circular pipeline message-

passing construct caused a deadlock when using the older

network code. Each AE unit processes network connection

commands serially, and because the UI made sure server side

connections were processed first, all AE units involved in a

circular pipeline message were acting as servers waiting for

a client connection. However, the same set of AE units

waiting for a client side connection were the ones that

needed to also act as clients. The result was a deadlock

situation.

Consider the following example. If "A" and "B"

are involved in a circular pipeline connection they will

both receive two connection requests, a server side with the

other AE unit and a client side with the other AE unit.

They first execute a blocking call to listen for a

connection (server side) and then wait. If the listen

finished, they would next execute the client side of the

connection but because neither is acting as a client and the

server side will wait indefinitely. The result is a

deadlock.

After this problem was discovered, the entire

networking code was reevaluated. The changes included:

multiple retries on client side connections (including

progressively longer times between retries), server side

45

timeouts (if a client never connects, the server side will

give up) and multiple threads to process connection

requests. The use of multiple threads allows an AE unit to

service client and server side connection requests

simultaneously. This fixed the deadlock situation. These

changes fixed all the known problems with the networking

code.

i) Network, Send and Receive

This section describes the three modules that

allow network communication between AE units. The three

modules are grouped together because of their interactions

and common functionality, but they are distinct software

modules. The network module was written in Ada95 (as was

the rest of the AE system) but the send and receive modules

were written in the C programming language because of its

flexibility and system interfaces.

The network module controls the networking

functionality for the AE. Its main functions include:

processing of new connection requests, checking for new

messages, preparing messages for transmission, and recording

46

data metrics on messages. Each of these areas is discussed

below.

The processing of new connection request allows

the transmission of messages between AE units. When an AE

unit is initialized, it first creates a TCP/IP connection

with the UI. The UI reads the command file, and when it

processes network commands, it sends connection requests to

the appropriate AE units. The networking module acts on

these requests and creates the necessary networking

connections between other AE units. When an AE unit has

active network connections, it periodically polls those

connections to check for the arrival of messages. The

networking module maintains a list of active connections and

periodically calls the receive module (described below) to

check for messages. If a message is received, the network

module performs the following actions:

• insert a time stamp into the message (time
received)

• increment a counter recording the number of
messages received

• add the byte count of the current message to the
total byte count for the protocol (i.e., TCP)

The send module receives its input from the

network module (described above). Its job is to package the

three components of a message into a buffer, and pass the

47

message to the Operating System (OS) for transmission.

Figure 7 diagrams the three parts of a message. The amount

of padding is the total size of the message minus the other

two parts: header and AE network command data structure (the

data structure is diagramed in Figure 6).

Total Buffer
size

V

16 Byte Header

AE Command
~ 290 Bytes

Message padding
variable length

Typical
Message

Figure 7 Message Layout

One of the problems associated with a wide range

of message sizes is maintaining buffers. Message lengths

48

are dynamic, and it is possible that the next message will

be larger than the current buffer. The send routine

maintains separate buffers for sending UDP and TCP messages.

The first step in building a message for transmission is

testing the message buffer's size against the input

parameter that defines the current message's length. If the

current message buffer is not large enough to hold the

current message, then a new buffer is allocated and the

existing one is released. To minimize memory allocation/de-

allocation, (generally considered a problem due to memory

fragmentation recovery processes that can cause real-time

systems to miss deadlines in a real-time) system, the

following technique is employed. The new buffer is five

kilobytes larger than the current message. The value of

five kilobytes was arbitrarily chosen. Although the

increase in size is much larger than needed for the current

message, the overhead and impact of memory allocation is

minimized.

A message, as diagramed in Figure 7, is

constructed from the top down. First the header, a sixteen-

byte field is built and copied into the buffer. The message

header is described in detail below in the receive module

section. Next, the instructional part of the message is

copied into the buffer (this is the information that comes

49

from the AE command via the command file) . The message

padding is not formally placed into the buffer. Because the

system call to send a message requires a pointer to a buffer

and the message's length in bytes, the padding is safely

included in the message by ensuring the buffer is larger

than the message size.

The last module covered in this section is the

receive module. It is the receive module's job to undo what

the send module built up and then to return the AE command

data structure to the message processing module (covered in

section III.C.3.j).

There are differences between the communication

protocols TCP and UDP that require the receive module to

treat these protocols separately. TCP messages are received

as part of a flow of information that spans messages. UDP

messages, on the other hand are received individually with

no overarching organization imposed upon a series of

messages. In between the sender and the receiver, the

network components may break up a UDP packet into separate

IP packets but the receiving side's OS will deliver the same

size message to the receiver.

To receive UDP messages, the receive module calls

the recvfrom system call. One of the parameters to the

recvfrom system call is the number of bytes to read. If

50

that number of bytes is less than the entire message, then

part of the message will be lost. For example, if we

receive a 500-byte UDP message and only read the first 100

bytes, then the last 400 bytes are lost and cannot be read

later. This feature actually helps the AE receive messages

because the number of bytes that must be read is known

(header and AE command data structure) and the remaining

bytes can be safely dropped.

When receiving TCP messages, the receive module

needs to maintain message boundaries. Here, the main

problem is that a receiver does not know the length of a

message before receiving it, and, unlike UDP, all the bytes

of a message must be read before the module can process

future messages. The header, introduced above solves the

problem by providing the message size to the receive module.

A message header contains the following information:

• message size in bytes,

• message type and

• endian field (described below).

The receive module will first issue a read to

obtain the header information, it can then calculate how

many additional bytes of information must be read to fully

receive that message. Next, it will read the instructional

51

part of the message into a data structure that will be

returned to the calling procedure. The final step is to

read the remaining bytes of the message. These bytes are

formally known as the message padding, and they are read and

discarded.

The network receive module uses a unique and fair

method for processing messages over multiple active network

channels. The fairest way to process messages would be as

they were received. Unfortunately most operating systems do

not instruct an application that has more than one pending

message any timing information on those messages. Fair

means that if the last message received was from Connection

Channel Three, and now the AE unit has two messages ready

for processing (one on Channel Three and one on Channel

Five), then we will process the message from Channel Five.

The implementation uses an integer to remember the last

active channel. When more than one channel has a message

ready for processing, the AE uses a modular counter to

select the next message for processing. that is, the AE

unit will choose the channel numerically higher than the

last one selected (the selection will wrap around to zero if

the last one selected is numerically the highest in the

set). It is the author's observation that most

communication software, using the select system call will

52

favor lower number (over higher) channels when two or more

messages are ready for processing simultaneously. The

technique developed for the AE appears to be unique.

To summarize, the network modules take care of

many issues related with communication over networks and

allow the AE system to emulate complex message passing

applications. The sending modules build up the messages for

transmission. The receiving module processes the header

information to 1) deal with endian3 issues, 2) identify the

message and, 3) by using the size information, safely

receive any size message. After a message is received, it

is returned to Message Processing for further processing.

3 Endian refers to one of the many data compatibility issues
that can occur when computer systems from different
manufacturers or operating systems communicate over a
network. The endian problem stems from the fact that some
data types are stored differently on different computers.
Big endian systems store the most significant part of the
number of some data types first (lower address value) and
little endian systems store the values in a reversed manner
[STEV98]. The endian field (borrowed from HiPer-D) provides
a nice method for a receiver to quickly determine if the
message received needs an endian conversion. The field
contains a value that when tested informs the receiver if
the message requires an endian conversion or is fine as
received.

53

j) Message Processing

The input to this module is the output from

Network receive component (section III.C.3.i). The receive

module returns known data types (i.e., AE network commands)

and places them on a circular queue. The message-processing

thread is event-driven and if no messages are available for

processing it stays in a blocked state (to reduce CPU

usage) . If the queue is empty then the message-processing

module remains blocked. The event of adding an item to the

queue unblocks the message processing thread. This feature

is implemented using ADA95 protected objects. Protected

objects operate provide mutual exclusion. The rest of this

section contains a description of how messages are processed

by AE units.

The design decision to separate message reception

from message processing allows the receiving thread to

efficiently receive pending messages. The processing of

messages can be time consuming, and is therefore handled by

a separate thread. The following steps outline what each AE

unit does to process a message:

• compute and complete CPU workload,

54

• forward the message if necessary, and

• execute an event if necessary.

Each message contains workload information for

each receiver (workloads are uniquely defined for each

receiver of a message). The pipeline, circular pipeline and

fan-out (Figure 5) message constructs are examples of

messages that can have several receivers. Workload

information is defined with the same parameters as the CPU

loader, and therefore it is described as a statistical

distribution. The workload emulation uses the same

benchmark module as the CPU loader module. The workload is

used to simulate the work involved in message reception and

processing. Next, the message is checked to determine if it

should be forwarded. A pipeline message (Figure 5) is an

example of a message that some AE units (B and C) would need

to process and then forward. If this AE unit is the last

receiver of a message, then an optional event can be

included. Events can be:

• start a CPU loader job,

• stop a CPU loader job, or

• send a new message.

55

All events have an associated probability. This

gives the AE system the ability to dynamically alter its own

behavior and fulfills the requirement of supporting

transient periodic processes.

k) Controller

The Controller provides the interfaces between the

UI and the internal modules of an AE unit. Its major

function is to receive commands from the UI, process those

commands and then issue the commands to an appropriate

module within the AE unit. Further, the controller reports

new information to the UI. There are four types of commands

that the controller has to process: CPU, memory, message,

and shutdown. Once a command is identified (e.g., a CPU

command) it is sent to the appropriate module for

processing. A CPU loader command, for example, will create

a new CPU loader process. Because all timing issues related

to commands are handled by the UI, the controller merely

processes commands when they are received.

56

D. SUMMARY

This chapter has described the AE system. It started

with a high level view of the AE system as it would be used

as an emulation tool (Figure 1 AE System). Next that system

was examined at a component (i.e., AE unit, see Figure 2)

and at a sub-component level. At the sub-component level,

many of the details about the AE unit were explained. In

addition, some of the problems encountered while developing

the AE system were also discussed.

The next chapter will present results from a series of

emulation experiments using the AE system. A tactical

modeling tool was used as the target application for the

emulation. The results show that software emulation using

the AE system can be effective.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

IV. SYSTEM EMULATION AND EXPERIMENTATION RESULTS

A. INTRODUCTION

This chapter describes how the AE system can be used to

emulate an existing software system. The emulation process

has three major steps. For demonstration purposes, an

example that emulates a system from Teledyne Brown called

EADSIM [EADOO], is used. Before the steps are described, an

overview of EADSIM is presented. The final section of this

chapter describes the work required to validate the AE

system's accuracy in emulating a real system.

B. EADSIM

• Extend Air Defense Simulation (EADSIM) is a warfare

modeling program. EADSIM is widely used to model battle

scenarios as an aid in making tactical decisions. It

consists of four modules: C3I, Detection, Propagation and

Flight Processing. These modules operate in a distributed

fashion and thus use networking protocols to communicate.

One of the four modules is optional (i.e.,

Propagation) and was not included in Porter's [PORT99]

59

thesis results, which are used as input to the AE's

emulation process. EADSIM supports a wide range of tactical

systems that can be included in a model. Battle scenarios

are constructed through a complex iterative process

[PORT99].

For the purpose of this thesis, the configuration of,

and results from, EADSIM are interesting but not necessary.

Remember that the AE system does not return useful results,

but rather loads the system as if a useful application was

running. The block diagram of EADSIM (Figure 8) shows the

communication paths between the three distributed modules of

EADSIM. The resource usage results from Porter's execution

of EADSIM are presented at the end of the chapter, followed

by the results of the AE systems' emulation experiment using

EADSIM.

60

Commands

Ground Truth

Flight Processing
• Aircraft
•SSM
•Ground Movement
•Satellite

C3I Process
(Driver)

Periodic Detection's

Commands'

Ground Truth

Figure 8 EADSIM Runtime Block Diagram

C. SYSTEM EMULATION: THE THREE STEP PROCESS

Starting with a system like EADSIM, and automating the

steps to emulate it using the AE has always been a desired

feature of the AE project. Figure 9 below, shows the three-

step process for creating an emulation from an existing

system using the AE system. For reasons listed below, the

goal of automating this process was not realized. A problem

was the tools (or lack of tools) needed to profile an

application's components to produce the information required

to construct the AE command file. Also, as will be shown, a

61

general understanding of the system under study is required

and cannot be obtained from the profiling tools.

Operating System

C> Wrapper
Data,

Resource
Profile

STEPS
1. Resource Data
2. Conversion
3. Emulation Execution
4. Emulation Comparison

>

AE
Commands

and
Information

Target
Usage
Numbers

y

:> System
Emulation

Figure 9 Emulation Steps

Figure 9 diagrams the steps involved to use the AE

system for emulating an existing system. The fourth step,

not addressed in this paper is a response loop, which allows

the emulation process to be tuned. The steps shown in

Figure 9 will be described for emulating the EADSIM

application by the AE system.

62

1. Step One: Gather Resource Usage Data

The objective of this step is to gather data on the use

of system resources by the application. As shown in Figure

9 the wrapper tool was used for component profiling; this

profiling tool was developed by Schnaidt [SCHN98] under the

MSHN project (MSHN wrappers). The MSHN wrapper tool

operates between an application and the Operating System

(OS), by intercepting system calls. Here a MSHN wrapper is

a low-overhead component that usually only records the

parameters to a system call. For example, a network send

calls the OS write function, the MSHN wrapper interrupts the

write function and records the number of bytes followed by a

call to the underlying OS write function. All applications

(on Unix) call the exit function to halt normally. As

implemented by Schnaidt, the MSHN wrapper for the exit

function completes its job by obtaining the CPU usage data

and logging all the resource usage data collected.

The MSHN wrappers provide network and CPU usage profile

data. All the data provided in this chapter on EADSIM was

compiled by N. Wayne Porter and was obtained from his thesis

[PORT99] . These data are then used as input into Step Two,

outlined below.

63

Step Two: Using Profile Data to Construct AE
Commands

Starting with the profile data from the previous step

and creating AE commands that accurately emulate a system is

the most difficult step in emulating an existing software

system. Some of the data provided by the MSHN wrappers can

be easily converted into AE commands, while other data

require a conversion step. This section will cover the

details of converting the MSHN wrapper data into AE

commands.

The network data are in a format that maps nicely into

AE commands. The MSHN wrappers report networking data in

the following areas:

• total number of messages sent,

• total number of messages received,

• total bytes sent, and

• total bytes received.

The conversion from the above format into AE commands

is fairly easy because both systems use similar units. The

AE system sends messages through a CPU loader module's

action. Thus, if an application sends 4 messages per second

and the CPU loader has a period of 0.5 seconds, then in each

64

period, the application will send two messages. If the

number of messages varies, then the probability (of

executing the action) and the repeat value {for the CPU

Loader) can be modified to obtain the desired message rate.

The AE message command provides the AE unit with the

following information: size in bytes, and path information.

The transmission rate of a message is related to a CPU

loading parameter. See Section III.e.2 for a more complete

description.

The CPU workload information currently provided by the

MSHN wrappers does not easily convert into a format that can

be used to construct AE commands. The MSHN wrappers report

CPU utilization in seconds (e.g., 17.115 CPU seconds) for

each module. An AE unit, on the other hand, operates in

terms of Kilo-Whetstones (1000 Whetstone instructions) or

Kilo-Dhrystones. The mapping between these units, to any

degree of accuracy, requires executing an AE unit on the

same computer used to obtain the MSHN wrapper data.

The method developed to address this uses the AE

system's percentage capability to output the number of Kilo-

Whetstones needed to utilize the CPU at 100% for a specified

time. To specify the CPU usage in that manner requires a

single command to run a CPU loader module for one iteration

using 100% of the CPU for the amount of time desired (e.g.,

65

usage = 100%, number of iterations = 1, time period = 22.567

seconds) . The AE unit will then print out its calculation

for the number of Kilo-Whetstones or Kilo-Dhrystones needed

to produce the desired result. Remember that these are

ideal results. If you actually programmed an AE unit to

execute with those parameters it would execute that many

Kilo-Whetstones, but it would most likely not finish in the

time specified.

The MSHN wrapper provides the number of CPU seconds

the application used and this figure is used as the number

of seconds to use 100% of the CPU in order to emulate the

application's CPU usage. The number of Kilo-Whetstones

returned by this method becomes the target number of Kilo-

Whetstones for that module to execute over the entire

emulation.

The algorithm used by an AE unit to calculate the

number of Kilo-Whetstones needed to consume a percentage of

a CPU is described below. When an AE unit is asked to use a

percentage of the CPU (e.g., 35%) it first does a test

designed to use 100% of the CPU for a short period of time

which produces a usage value that is used for all percentage

calculations. The test must take into account the following

assumptions and problems associated with clock granularity.

• For short time periods one user gets 100% of a CPU.

66

• Tests that are short have problems because clock
granularity can introduce error.

• Testing several times increases the odds that all
tests will not be pre-empted and swapped.

• Longer tests reduce the clock granularity problem
but increase the preemption problem.

Time

Tic
One

Test I

Test II

Tic
two

Tic
three

Total Time = 0

Total Time = 1

Test III Total Time = 1

Figure 10 Time Granularity Example

Figure 10 shows how clock granularity can introduce

problems (or error) into calculations. The basic problem

67

stems from the way the system reports time. In the area

between Tic One and Tic Two, the system will report the same

value for the current time. Timed events that operate for

short periods, relative to the clock granularity, can lead

to misleading results. Test I and II are almost the same

duration but return values that would create different

assumptions about their performance. Test III is almost two

clock tics in length but is reported as being one clock

tick. In this example test II is the only one where the

reported time is close to the actual time.

For a given CPU (i.e., computer), we wish to calculate

the number of KW (Kilo-Whetstones) that can be executed in

one second. Two of the values, number of KW (20,000), and

number of times to execute the test (i.e., 7) were selected

while accounting for the problems listed above. The test

recorded the start time, ts, and the time at the end, te.

xKW MKW vrtr MKW ±1 = => xKW = * lsec,
lsec (test)sec (te-ts)

Where
xKW: total Kilo-Whetstones needed to use 100% of

the CPU for 1 second
ts-te: elapsed time
MKW: number of KW used for the test (2 0,0 00)

The timing performance built into the AE system

operates at the millisecond (ms) time interval. As stated

68

above, an AE unit can be programmed to consume a percentage

of the CPU (i.e., 1-100%). Therefore, a CPU loading task

can be programmed to operate with a period of x ms that will

consume y percentage of the CPU. The formula below

calculates the number of Kilo-Whetstones that will consume

the desired percentage of the CPU, for the time interval

specified. The term xKW from the previous formula provides

the baseline for this calculation.

yKW = T*P*xKW ,

Where
yKW: CPU workload in KW
T: time in ms (ex. 10ms is entered as .010)
P: percentage (25% is entered as 0.25)
xKW: The value of KW that will use 100% of the CPU for

one second

A short example will illustrate the calculation. If

xKW is 100 and a user wants a periodic CPU load that uses

50% of the CPU and operates with period of half a second.

It is easy to see that the answer should be 25. The formula

becomes: 0.5 (time) * 0.5 (percent) * 100 (xKW) and will

yield the correct answer.

The percentage usage option for the AE was shown to

operate as designed. The Unix top command was used to

verify the percentage usage, because it reports an

application's CPU usage as a percentage. For the

69

experiment, the CPU load was set to 4 0%, and a time period

was set to 1 second. The top command, reported the AE CPU

usage with in 1% of the desired value. The results validate

that the method and parameters selected produce the desired

CPU loading.

As was shown, the conversion from CPU seconds to Kilo-

Whetstones is possible by programming an AE unit to use 100%

CPU utilization for the length of time reported by the MSHN

wrappers for CPU usage. The data for the conversion of

EADSIM modules from CPU seconds to Kilo-Whetstones is

contained in Table 1.

When an application's CPU workload is expressed in

Kilo-Whetstones, it can be converted into the command

language that drives the AE system. It should be noted that

this method is simplified from the normal case. Most

applications will have several threads, and detailed

information about each one may be necessary to fully emulate

the application. The data obtained from the MSHN wrappers

does not give any details about how many threads were

operating and the CPU usage of each thread.

Although the CPU percentage usage is part of the CPU

emulation capability of the AE system, it was not originally

included for the following reason. Applications can be

profiled by percentage CPU usage but what they actually do

70

is complete a task or set of tasks. If an application is

ported to a different computer system then that same

application may finish in a shorter time while using a

smaller percentage of the total CPU capacity. The AE

system's CPU emulation is centered on the idea that

applications complete tasks and using a percentage of the

CPU does not allow the AE to illustrate performance

variations in different computers and operating systems.

The AE uses a synthetic workload (Kilo-Whetstones) to

represent (or emulate) actual workload.

Another challenge to the conversion of resource data

into parameters for the AE command language was that the

MSHN wrappers do not record any real-time information.

Real-time information must be obtained through an

understanding of the system under study.

In conclusion, by using the information provided by the

MSHN wrappers, and a working knowledge of the system under

study, it is possible, by using various conversions, to

build the commands for the emulation (i.e., an AE command

file).

71

3. Step Three: Running a System Emulation

This step involves taking the command file produced in

the previous step and executing it to emulate the original

system's resource usage profile. The first step is the

process of starting and synchronizing all the AE units.

When all the components (the UI and all the AE units) are

operational, the UI begins reading and processing the

command file.

This section contains some detailed information about

the startup process that was introduced in Chapter 3. Some

of the details in this section review that material.

Each AE unit supports several command line parameters,

but only two of them play a role in the distributed

architecture (the others allow an AE unit to operate as a

standalone CPU loader). The first parameter defines the AE

unit's name, and the second parameter contains the hostname

of the system where the UI is operating. The UI also has

two command line parameters of interest: command-file, which

contains the commands used to configure the AE units; and an

integer parameter which informs the UI as to how many AE

units are participating in the experiment. The command file

72

contains all the commands that give each AE unit its

identity (to emulate its part of a RTDS) . The parameter

informing the UI of the number of AE units allows the

startup process to take an indeterminate amount of time to

complete. The UI keeps a running count of AE units and

waits until they all have an active connection with the UI

before starting an emulation experiment.

Figure 11 diagrams the automation for running

experiments. There are two levels of processing above the

AE system level. The top level written for this thesis

starts the automated startup level and, after AE system

completes, this script will copy the remote data files into

a file structure defined in the script's configuration file.

The automated startup script (see Figure 11), borrowed from

the DynBench project, starts the components (the AE units

and the UI) and supplies them with their command line

parameters. Using remote authentication4 for starting

processes, the Startup script can start processes on any

computer system on the LAN. The configuration files for the

two tools are included in Appendix C. Figure 11 contains a

graphical representation of the tools.

4 Remote authentication allows user and system pairs to be
mutually trusted, and, as such, can execute commands without
presenting a password as might be required in an interactive
session. [UNIX97].

73

Automated Emulator Execution Diagram

Top Level: Starts Automated level
Copies Log and Data
files to local system

Start Up: Automated startup.
starts all AEs and the UI

with command line arguments

Emulation: Emulator runs, produces
Log and Data files

AE_batch Configuration file For AE_Batch

■

j- Configuration file for Started STARTER

AE unit

Log_file

Data file

Log_file

Data file

Logfile

Data file

Figure 11 Automated Emuation Diagram

Once all the necessary AE units for an experiment have

connected with the UI, the emulation process begins. All AE

commands have an optional time parameter, which is based on

the time that the last AE unit established a connection with

the UI (i.e., elapsed time). As described earlier, the UI

processes the command file, and then issues each command to

the appropriate AE unit. Normally the last command in the

command file, is the stop_all command, which instructs all

the AE units to perform a normal shutdown. Before shutting

down, each AE unit outputs all its data and debugging

74

information to a data and log file. The data file contains

the following data relevant to QoS considerations:

• network usage data

- number of messages sent and received

- total number of bytes sent and received

- timing information on each message

• CPU usage data

- total number of Kilo-Dhrystones executed

- total number of Kilo-Whetstones executed

• deadline information

- Each CPU loader module records the number of
deadlines missed

The next section compares the information obtained from

experimental runs of EADSIM (the data from the AE system is

obtained from the data files) with the target numbers for

the emulation of EADSIM.

D. EADSIM WRAPPER RESULTS

The data in Table 1 was obtained from Porter's [PORT99]

thesis. He obtained the data from the MSHN wrappers while

executing EADSIM as shown in Figure 8.

75

Table 1 EADSIM Resource Usage Data

EADSIM Resource Usage Data

C3I FP User Detect
User CPU time 17.717 17.125 16.316
System CPU time 3.026 3.196 5.855
Total CPU time 20.743 20.321 22.171
Wall time 94.5 77.1 93.3
Bytes written 1,634,436 1,029,378 2,057,529
Number of writes 155,957 741 589

The three data columns in Table 1 are labeled by EADSIM

modules (see Figure 8) . As shown in Table 1 the wall time

(i.e., actual execution time) is much longer than the CPU

usage time. It is important to note that EADSIM is not a

real-time application, but is similar to a real-time

application in that its operations are time stepped

[PORT99]. The importance of time makes sense because a

battle simulator must account for when and where events

happen. Table 2, contains the conversion from the MSHN

wrapper CPU data into Kilo-Whetstones. The Kilo-Whetstones

numbers are the target CPU usage numbers for the three

components in the emulation.

76

Table 2 CPU Resource Usage Data for EADSIM

EADSIM CPU Resource Data and AE Conversion CPU Data

C3I FP Detect

CPU time 20.743 20.321 22.171

Kilo-Whetstones 906,096 887,662 968,474

Table 3, contains the network information from EADSIM.

Included is a new row that shows the average message size

transmitted by each component.

Table 3 Network Usage data from EADSIM

EASDIM Network Data

C3I FP Detect

Number of writes 155,957 741 589

Total bytes 1,634,463 1,029,378 2,057,529

Ave. msg. size 10.5 1389.2 3493.3

As shown in Table 3, the average message size sent from

C3I was between 10 and 11 bytes. The AE system's minimum

message size is approximately 300 bytes, due to the overhead

introduced by the complexity of the AE messaging. The

result is the AE cannot emulate small messages. A

compromise to permit emulation of C3l's network traffic was

to lower the total number of messages while increasing the

77

size of the average message to a value that the AE system

could support. The resulting emulation reasonably matches

the number of bytes sent by C3I, but not the number of

messages sent.

EADSIM's operation is time stepped. C3I controls the

execution by issuing commands, which include timing

information to the other modules (i.e., Detection and FP) .

When the other modules complete the workload for current

time step they send information back to C3I, and the process

repeats until complete.

Using the AE system to accurately emulate EADSIM will

require the same master/slave relationship. Because the

execution of EADSIM is time stepped, the two processes that

are slaves (Detection and FP) to the master (C3I) will

receive all their workload via AE messages. The method of

emulation was intended to simulate actual operation, where

the three components of EADSIM complete one time step's work

and then wait for the command to start the next time step.

The algorithm used to construct the command file for

emulating EADSIM is described below. The command file used

for the emulation is included in Appendix B. The wrappers

provided high-level usage information about the three

modules of EADSIM. The wrappers did not provide detailed

information about EADSIM execution characteristics. For

78

example, it was not possible to tell whether or not the CPU

usage of FP occurred evenly over the execution time or if

it had periods of greater usage and other times of much

lower than average usage. Without detailed usage

information, the emulation was forced to assume that the CPU

usage was consistent over the wall clock time of the

execution of EADSIM (94.5 seconds). EADSIM is driven by the

C3I process; it provides the timing, through commands to FP

and Detect. Therefore, the emulation will focus on C3I

process and use the same architecture to drive the other two

modules. The easiest way to construct the emulation was to

treat the relationship between C3I and detect separately

from the relationship between C3I and FP. Therefore, the

CPU load for C3I will be divided in to two CPU Loader tasks.

One CPU Loader task sent messages to FP and the other sent

messages to Detect. Both messages contained the workload

information necessary to emulate CPU usage for FP and

Detect. Other messages that are part of the EASDIM system

were emulated using events. Table 4, lists emulation target

values and experimental results. It is important to

remember that the target numbers are emulation target

numbers and are not MSHN wrapper results. The target

numbers were established through the conversion process

described earlier. Recall also that C3I's number of

79

messages sent was modified to account for a shortcoming in

the AE system.

Table 4 Target and Emulation Results

J. arget Numbers fo: c EADSIM Eir.ulati on

C3I FP User Detect
Kilo-Whetstones 906,096 887,662 968,474

Messages sent 5,448 741 589

Messages received 1,330 2,724 2,724

Bytes sent 1,634,463 1,096,533 2,057,529

Bytes received 3,086,907 817,232 817,232

3xperimei ital Results Fron-. AE System 3ir,uiatio--. { Averages;

Kilo-Whetstones 925,979 887,365 967,881

Messages sent 5,441 781 566

Messages received 1,345 2,720 2,720

Bytes sent 1,719,738 1,096,533 1,984,406

Bytes received 3,059,339 816,082 816,586

Percentage Error (ai Dsolute value)

Kilo-Whetstones 2.19% 0.03% 0.06%

Messages sent 0.13% 5.40% 3.90%

Messages received 1.13% 0.15% 0.15%

Bytes sent 5.22% 0.00% 3.55%

Bytes received 0.89% 0.14% 0.08%

Figure 12, shows how the three emulation steps, and

tables, presented in this section fit together. The data in

Figure 12 is the average values for the resource loading.

The exception is the target numbers, which are calculated

from the resource usage data. The emulation experiment

shows that the AE system can be used to emulate existing

systems, and that it can produce results that are within a

80

small percentage of the target values. It is important to

note that all emulations will have some variation from the

actual resource loading of the system being emulated. For

this experiment, the amount of variation from the target

numbers as shown in Table 4 was small.

The results presented are from a sample size of 103

emulation runs of EADSIM. Appendix E shows a full

spreadsheet containing the data collected from the 103

experimental executions of the AE system emulating EADSIM.

As can be seen by examining the data in Appendix E, the

results for most of the metrics are fairly close to the

average for all runs. The data in Table 4 contains the

average values for all the metrics recorded.

81

1 Eadsim Applications (Wrappe r Data)
1 C3I FP User Detect
iTotal CPU Time 20.743 20.321 22.171
Wall clock time 94.5 77.1 93.3
1 Network Bytes written 1,634,463 1,029,378 2,057,529
s Bytes per write 10.5 1389.2 3493.3

1
RT Application

Wrappers

Operating System

=>

!AE Target Numbers

Wrapper
Data,

Resource
Profile

C3I FP User Detect
CPU 906,096 887,662 968,474
Messages sent 5,448 741 589

! Messages Received 1,330 2,724 2,724
! Bytes sent 1,634,463 1,096,533 2,057,529
Bytes Received 3,086.907 817,232 817,232

>

AE
Commands

and
Information

=>

Target
Usage
Numbers

-> 4 <-

System
Emulation

1Z
AE
Log
file

1
AE Actual Numbers

C3I FP User Detect
CPU 925,979 887,365 967,881
Messages sent 5,441 781 566
Messages Received 1,345 2,720 2,720
Bytes sent 1,719,738 1,096,533 1,984,406
Bytes Received 3,059,339 816,072 816,586

Figure 12 Experimental Results Diagram (Averages)

Additionally, the results show that the AE system

operates as intended. The commands were carefully written

for this experiment, but if the AE system had not operated

as intended then the results would have showed a larger

percentage error for one or more of the recorded metrics.

82

E. SUMMARY

This chapter showed how an existing system can be

profiled by starting with data obtained using the MSHN

wrappers. Further, we described how that MSHN resource

usage data can be used as input into a process that can

build all the necessary configuration files for an emulation

using the AE system. As was shown, the emulation can then

be executed and the results obtained from the AE's data

files can be compared to calculated resource usage values.

The results obtained showed that the AE system did

accurately emulate EADSIM resource usage. Adjustments can

be made to compensate for the AE limitations, for example

the fact that the smallest size of an AE message was much

larger than that of the application it was emulating.

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

V. DISCUSSION AND CONCLUSIONS

A. LESSONS LEARNED

Some potential customers of the AE were not comfortable

with the Ada programming language selection. Ada is

perceived to be a government mistake and therefore most

sites do not have the expertise or compilers to support Ada

development. The choice to develop the AE in Ada95 was a

good technical decision but possibly a poor one for

marketing the AE.

Much of the AE was developed . using Object-Based

programming and not full Object Oriented (00) techniques.

"Object-Based usually refers to objects without inheritance

and hence without polymorphism" [OBJFAQ]. If the AE project

was designed and developed using full 00 features then

future changes could easily produce new and powerful

capabilities, while leaving the existing functionality

intact. The current design allows for change but does not

leave the old functionality intact. A full 00

implementation would have been a wise decision.

85

B. FUTURE WORK

A number of additions to the AE would increase its

emulation functionality. One improvement would be to

provide a general mechanism to allow the AE to send and

receive messages from existing systems. Used in this

manner, the AE system could obtain its loading from an

existing system or be used to drive an existing system.

While this capability exists, it is limited and must

currently be customized for each type of message. A

general-purpose method for this type of feature would be of

great value for a real-time development project.

The use of multicast could reduce the complexity of the

UI to AE unit communication. Using multicast for the Ul-to-

AE communication would eliminate the command line parameter

to the AE used for finding the UI. This feature would also

help the implementation of migration of AE units while an AE

system is operating (one of the features not yet

implemented).

86

Other future features include different load simulators

for many of the other resources that applications utilize.

The following list contains some of the resources that would

increase the emulation capability of the AE.

■ File access (local and file server)

■ Display subsystem

■ Database

C. COMPARISON WITH RELATED WORK

This section contains the comparison of this thesis and

other projects that are closely related with the AE system.

1. DynBench

A common goal for the AE and DynBench projects was to

provide researchers tools with which to emulate the HiPer-D

system. The approaches taken by the two efforts were vastly

different. DynBench's approach was to build a simplified

version of HiPer-D, making it a specialized solution to the

problem. The AE system on the other hand, is a general-

purpose real-time application emulator, and because HiPer-D

87

is in the class of systems that the AE can emulate, it too

can provide an emulation solution. The primary task in

creating such an emulation would be the construction of the

command and configuration files.

The HiPer-D team plans to combine the DynBench and the

AE system and make the combined system available to other

researchers. Users will be able to use the AE and DynBench

either in combination or individually. These two systems

are complementary. The AE system offers users a wide range

of configuration options while DynBench offers users a

specific and well-tuned HiPer-D emulation tool.

2. Carff Emulator

Carff's emulator has many interesting characteristics.

It is a distributed, portable (developed in Java), message

passing application emulator. It contains many of the high

level features found in the AE system, but its code size is

at least an order of magnitude smaller than that of the AE.

There are several differences between the two systems.

The main one is that the AE is a real-time emulator and

Carff's is a user-level application emulator (applications

that execute a task and finish) . The message passing

subsystems are vastly different; the AE supports a complex

88

yet flexible message passing subsystem, while Carff's only

supports point-to-point messaging. The CPU workload of the

two systems is similar; both offer a wide range of options

for providing CPU loading with statistical variation.

By using the programming language Java that abstracted

out the details of networking, the Carff emulator enjoyed a

much shorter development cycle than the AE. In contrast,

networking is at the heart of the AE project. For the AE,

networking took the lion's share of the development time and

introduced most of the difficult problems.

3. Petri Nets

Petri Nets are a tool that allows researchers an

indirect method for studying systems. The method includes

building a mathematical model of the system under study.

This model is then studied in a laboratory setting. This

indirect method of study is useful when the actual system is

difficult to study.

The AE will allow modeling through emulation, and, as

such, will allow Petri net-type analysis of some systems.

Using a loose definition, the HiPer-D system is an example

of. a Petri net system. In this case, it is safer and easier

to develop and study the system in a lab before fielding it

89

on a ship, where lives and operations will depend on its

functionality.

4. Hartstone

The Hartstone benchmark [HART89] is a tool that can be

used to prototype real-time systems and is mainly used for

studying real-time system performance. There are many

similarities and differences between the use of the

Hartstone benchmark system and the AE project.

Starting with the similarities, both systems can

support:

■ Prototyping of real-time systems,

■ Sending and receiving of messages,

■ Periodic and aperiodic tasks and

■ Synthetic workloads.

The differences between the two tools are numerous. The

Hartstone benchmark is intended to operate as a single

system that will return a performance metric. The metric is

either on (the system has met all its real-time deadlines)

or off (the system missed at least one real-time deadline).

The AE, on the other hand, was intended to be a tool that

operates concurrently with other systems. Its main purpose

90

is to allow experiments to determine the effects of CPU

loading and network communication on the total system. Many

of the other differences stem from that difference. For

example, a Hartstone test will terminate when a deadline is

missed. The AE simple records the event and keeps on

executing. The messaging subsystem in the AE reflects the

recent growth in distributed systems where communication is

not always point-to-point. It allows for messages that span

several applications and further records the time it takes

that message to traverse its path. Another big difference

between the methods relates to workload, the Hartstone

benchmark defines workload in terms of percentages while the

AE uses an actual value (i.e., kilo whetstones) as well as

percentages.

The AE implements or is designed to support many of the

latest developments in real-time software. For example,

application migration would not be supported by the

Hartstone benchmark. The Hartstone Benchmark is primarily

for embedded real-time systems [HART90]. It would be almost

impossible to meet a deadline if an application were to

migrate during a period. The new approach is to allow, a

system experiencing problems to miss some deadlines while a

controlling application (i.e., a RMS) carries out an effort

91

to return the system to full functionality as quickly as

possible.

It would not be difficult to convince someone that a

system that is critical for an airliner's operation should

be able to recover from an event such as a PC crash. This

is an example of a "real-time mission-critical system that

must respond in a timely manner to conditions in their

environment" [WELC98]. The recovery process might merely

require that applications that existed on the crashed system

be moved to a different computer. Thus, the whole system

could be restored to full operational status. In this

scenario, the crash may cause some short term problems, but

if the remedy is applied before total control of the

aircraft is lost, then the safe recovery can be achieved.

The AE is a tool that can support this paradigm and the

Hartstone benchmark, while an excellent tool, cannot support

this form of system survivability.

D. CONCLUSION

Members of the HiPer-D development team saw a need to

develop a real-time application emulator to help them

evaluate their prototype Real-Time Distributed System

92

(RTDS). In order to be useful, the system would need to be

able to easily emulate a wide range of real-time

applications. Further, the resource usage of these emulated

applications would have to be programmable. The existing

set of tools available for real-time emulation did not meet

their requirements.

Starting with a need and a set of requirements, the AE

project set out to build an emulation application that could

emulate RTDS. The main resource areas of emulation were CPU

and network usage. The emulation was designed not only to

match how much of a resource an application used but also to

closely match when that resource was utilized. The final

product, as was demonstrated through the EADSIM example, has

enough built-in emulation capability and control to emulate

a wide range of distributed applications accurately.

In conclusion, AE system is a tool that, in some

cases, can aid developers of real-time systems. As the

world becomes more dependent on computers and especially

real-time computer systems for safe functionality (e.g.,

aircraft) , the need for tools to help design and prototype

future systems increases. The AE project fits nicely with

the other existing tools presented in this paper and as such

has the potential to aid in current and future real-time

development projects.

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

APPENDIX A: AE COMMAND FILE FOR EADSIM EMULATION

Below is the command file that was used to Emulate
EADSIM. The first 10 seconds are used to create the
communication channels. For example, the ": 0:0:2:0:" means
that 0 hours, and 0 minutes, and 2 seconds, and 0 ms after
starting, execute this command. The message definitions are
all separated by two seconds. While this is not necessary
in theory; sometimes the AE system will have problems
processing several network commands at the same time. The
actual emulation process is started 10 seconds after the
synchronization occurs. The "all done" and "turn off" occur
well after the wall clock time for EADSIM (i.e., its CPU
loaders should have executed the number of iterations
programmed, recorded their CPU usage, and QoS information
and exited) . The "turn off" is the command for the UI to
exit. At that point, the network code will report its QoS
data. That last step taken is to write and close the data
files. None of this is shown but is part of the normal
shutdown process for an AE unit.

Simple C3I :: TO :: FP and Detect

0:0:2:0:c3i network define_message TCP 16081 300 normal 12 1 simple fp
326 normal 15 wheat send_a_msg 3 27
c3i network define_message TCP 16082 300 normal 12 2 simple detect 356
normal 17 wheat send_a_msg 4 22

Simple FP :: TO :: C3I,

0:0:4:0:fp network define_message TCP 16083 1389 normal 46 3 simple c3i
0 normal 0 wheat none

Simple Detect :: TO :: C3I

0:0:6:0rdetect network define_message TCP 16084 3494 normal 116 4 simple
c3i 0 normal 0 wheat none

0:0:10:0:c3i cpu cpu_cmd a_de 1 true 584 wheat actual 167 normal 7 17
true send_msg 2 100 160
0:0:10:200:c3i cpu cpu_cmd a_fp 1 true 584 wheat actual 167 normal 7 17
true send_msg 1 100 160

0:0:110:0:all done
0:0:112:0:turn off

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

APPENDIX B: AE COMMAND STRUCTURE

Appendix B contains the command structure for the AE
system. The diagram below reads from the top to the bottom
and spans the next few pages. At each location in a
command, where the value in that field will cause a branch
in the command the graph also has a branch and the arcs are
labeled with the choices for that entry. Because some of
the commands are quite long, the diagram is continued on the
following pages (Network and CPU). When a valid entry for a
command has only a few choices, they are placed inside
parentheses.

Time Field (optional): (hh:mm:ss:msms)

AE Name:(1-14 Characters)

Command Type: (CPU, Network, Memory, AII_done)

Memory CPU Network

Cmd: (amount_to_add, amount_to_free)
amount: (number)

This diagram is a continuation from the previous page
and reads from top to bottom. It shows the rest of the AE
CPU commands. Note, the last entry is the loader's duration
in time periods (i.e., how many time periods). A loader can
operate for a fixed number of time periods (e.g., 500) or,
forever, as would be the case for most real-time process. A
value of zero is entered when the loader should run forever.

(CPIU

Cmd: (cpu_cmd, endjobs)

Cpu_cmd Endjobs

Job ID:(name & #)
cmd: (Periodic, aperiodic)
Time period: (number in mili-sec)
Benchmark: (wheat, dry)
workload: Actual, %)

Actual

/^Load Mean (number)
Distribution (normal, exp., uniform)
Variance (number)
Repeat Factor (number)
Start Job: (Yes, No)

VJEvent: (Sendjnessage, None) J

Send_Message None

Msg ID
Probability of send (1-100)

Job ID

Percentage

Load Type: (Ramp_up, Flat)

Ramp_up

Starting %
Step %
Step factor
Ending %

Duration in
time periods or forever

98

This diagram shows the AE network command structure.
Note, the number of receivers is a number from one to five.
The loop in the center is where the different workload
values for each receiver of a message is configured. The
bottom of the diagram illustrates how events are configured.
Note that None is a valid event (i.e., no event).

Network

Define Message
Protocol: (TCP, UDP)
Port: (number)
Msg. Size Mean: (number)
Meg. Size Distribution: (normal, uniform, exp)
Msg. Size Variance: (number)
Msg Id: (Number)
Path type: (Simple, Fan_out, MultiJump)

Number_pf_receiver
Loop 1 .. Number_of_receiver

AE_name (1-14 characters)
Workload mean: (number)
Workload Distribution (normal, exp., uniform)
Workload Variance: (number)
Benchmark: (wheat, dry)

End Loop
Event: (Sendjnsg, Start CPU, Circular, None)

Send msg
Start CPU Job

Job ID

Probability: (0-100%)

None
Circular

Cmd: (Amount, Probability)
Value: (Number)

99

THIS PAGE INTENTIONALLY LEFT BLANK

100

APPENDIX C: AUTOMATED EMULATION CONFIGURATION FILES

The configuration files for the two automated startup
tools are shown below. The top diagram contains the
configuration of the tool that starts the other startup
tool. When the AE system finishes this tool will copy the
data files back to the current computer system.

The lower diagram is the configuration file for the tool
that starts the AE system. It needs: the path name of the
program (i.e., AE unit and UI), command line parameters and
the system name where it should be run.

Load_sim_batch Example file (Eadsim batch)

/lir \
Eadsimjresults

name
c3i alphel
fp alphe2
detect alphe3

cmds
Eadsim Eadsim.start

done

Start configuration file Example Eadsim. Start (DynBench tool)

tdrake;/home/usr/tdrake/LS/;ui.solaris2.6.exe file Eadsim.cmd 3;alphe3;
sleep 3

tdrake;/home/usr/tdrake/LS/;load_sim.solaris2.6.exe name:c3i ui :alphe3 ;alphe 1;
tdrake;/home/usr/tdrake/LS/;load_sim.solaris2.6.exename:fp ui:alphe3;alphe2;
tdrake;/home/usr/tdrake/LS/;load_sim.solaris2.6.exename:detectui:alphe3;alphe3;

101

THIS PAGE INTENTIONALLY LEFT BLANK

102

APPENDIX D: LIST OF ACRONYMS

AE Application Emulator
AH Hartstone Benchmark Standalone test
API Application Programmer Interface
ASCII American Standard Code for Information Interchange
C3I Command, Control, Communication & Intelligence
C The C Programming Language
C++ C "plus plus" Programming Language
COTS Commercial Off The Shelf
CPU Central Processing Unit
Detect Detection Process (part of EADSIM)
EADSIM Extended Air Defense Simulator
FAQ Frequently Asked Question
FP Flight Processing (part of EADSIM)
IP Internet Protocol
LAN Local Area Network
MSHN Management Systems
NSWC Naval Surface Warfare Center
00 Object Oriented
OS Operating System,
PC Personal Computer
PH Hartstone Benchmark Standalone test (one of five defined)
PN Hartstone Benchmark Standalone test (one of five defined)
QoS Quality of Service
RMS Resource Management System
RTDS Real-Time Distributed System
SA Hartstone Benchmark Standalone test
SH Hartstone Benchmark Standalone test
TCP Transmission Control Protocol
UDP User Datagram Protocol
UI User Interface
WCS Weapon Control System

one of five defined)
one of five defined)

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

APPENDIX E: DATA FROM A SERIES OF EADSIM EMULATIONS

Sample Time
Sec.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Work
Kilo-

Whetstones

C3i Data

Messages Messages Bytes Bytes
Sent Received Sent Received

92.96 910,744 5,440 1,363 1,719,865 3,177,358
92.94 910,559 5,440 1,331 1,720,289 3,131,094
92.93 911,995 5,440 1,339 1,718,443 3,150,189
92.93 908,434 5,440 1,314 1,717,910 3,086,010
92.93 911,405 5,440 1,378 1,718,769 3,221,250
92.93 909,731 5,440 1,404 1,718,382 3,267,131
92.93 909,406 5,440 1,385 1,719,194 3,274,533
92.93 911,627 5,440 1,379 1,719,091 3,240,254
92.93 912,939 5,440 1,365 1,719,022 3,174,493
92.93 911,339 5,440 1,380 1,719,926 3,273,636
92.93 909,341 5,440 1,388 1,718,267 3,155,483
92.93 910,243 5,440 1,355 1,720,314 3,153,989
92.93 913,600 5,440 1,397 1,718,317 3,300,024
92.93 908,716 5,440 1,375 1,718,660 3,185,017
92.94 910,333 5,440 1,377 1,718,180 3,203,098
92.93 912,320 5,440 1,341 1,719,018 3,115,931
92.93 907,315 5,440 1,385 1,717,953 3,287,455
92.93 908,027 5,440 1,298 1,719,756 3,054,718
92.93 910,554 5,440 1,377 1,719,910 3,202,327
92.93 906,189 5,440 1,313 1,719,558 3,033,111
92.93 907,806 5,440 1,349 1,719,862 3,225,880
92.93 912,677 5,440 1,375 1,718,270 3,236,355
92.93 911,514 5,440 1,317 1,721,352 3,037,212
92.94 909,408 5,440 1,370 1,718,171 3,241,987
92.93 907,627 5,440 1,357 1,719,634 3,169,059
92.93 904,127 5,440 1,359 1,719,005 3,187,086
92.94 907,137 5,440 1,360 1,718,029 3,189,261
92.93 909,096 5,440 1,347 1,718,775 3,186,036
92.93 909,624 5,440 1,348 1,716,833 3,110,805
92.93 910,363 5,440 1,356 1,718,549 3,159,311
92.92 908,086 5,440 1,306 1,716,356 3,090,926
92.93 908,660 5,440 1,353 1,718,992 3,191,105
92.92 912,916 5,440 1,376 1,718,959 3,221,792
92.93 908,524 5,440 1,404 1,719,739 3,329,034

105

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

92.94 911,536 5,440 1,391 1,718,975 3,292,900
92.93 911,266 5,440 1,341 1,719,292 3,181,081
92.93 907,960 5,440 1,299 1,717,327 3,074,857
92.93 911,930 5,440 1,359 1,720,580 3,128,674
92.93 908,068 5,440 1,339 1,718,828 3,102,043
92.93 907,018 5,440 1,326 1,718,019 3,104,702
92.93 910,926 5,440 1,375 1,718,266 3,223,316
92.93 908,199 5,440 1,368 1,719,412 3,108,910
92.93 908,613 5,440 1,357 1,717,872 3,179,651
92.93 912,559 5,440 1,359 1,719,178 3,176,295
92.93 908,074 5,440 1,447 1,720,180 3,378,578
92.93 907,023 5,440 1,399 1,718,609 3,323,445
92.93 907,188 5,440 1,377 1,719,547 3,246,892
92.93 906,722 5,440 1,302 1,718,584 3,067,133
92.93 909,927 5,440 1,379 1,719,934 3,207,577
92.93 911,130 5,440 1,375 1,718,935 3,258,271
92.93 908,042 5,440 1,398 1,720,070 3,261,265
92.93 910,476 5,440 1,367 1,719,873 3,202,444
92.93 909,012 5,440 1,314 1,719,417 3,110,609
92.93 905,559 5,440 1,380 1,719,466 3,185,968
92.93 912,566 5,440 1,349 1,719,757 3,102,280
92.93 908,547 5,440 1,325 1,719,433 3,051,015
92.93 910,164 5,440 1,361 1,718,433 3,174,327
92.93 909,705 5,440 1,293 1,717,365 3,063,736
92.93 912,955 5,440 1,364 1,718,581 3,239,674
92.93 909,801 5,440 1,321 1,720,910 3,126,011
92.92 907,551 5,440 1,366 1,719,332 . 3,166,106
92.92 910,440 5,440 1,365 1,720,295 3,177,639
92.93 909,346 5,440 1,376 1,717,599 3,229,892
92.93 909,310 5,440 1,306 1,717,819 3,078,273
92.93 909,300 5,440 1,330 1,717,869 3,194,821
92.93 912,726 5,440 1,390 1,718,936 3,276,833
92.93 909,184 5,440 1,350 1,718,542 3,129,802
92.93 910,463 5,440 1,354 1,717,450 3,233,155
92.93 909,643 5,440 1,367 1,718,673 3,179,600
92.93 906,425 5,440 1,379 1,719,138 3,239,515
92.93 913,111 5,440 1,367 1,718,459 3,235,067
92.93 908,408 5,440 1,424 1,718,922 3,364,259
92.93 909,967 5,440 1,402 1,717,778 3,231,122
92.93 908,718 5,440 1,377 1,720,109 3,269,965
92.93 908,376 5,440 1,358 1,720,737 3,189,299
92.92 909,935 5,440 1,336 1,720,902 3,132,721

106

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

92.93 909,516 5,440 1,325 1,720,013 3,109,189
92.93 912,540 5,440 1,374 1,719,753 3,203,944
92.93 907,754 5,440 1,399 1,719,097 3,359,174
92.94 908,808 5,440 1,297 1,718,432 2,939,887
92.93 914,022 5,440 1,411 1,718,216 3,295,320
92.94 908,065 5,440 1,370 1,719,103 3,137,401
92.93 908,598 5,440 1,376 1,718,480 3,231,753
92.93 912,191 5,440 1,365 1,717,798 3,202,152
92.93 909,791 5,440 1,362 1,720,330 3,181,126
92.93 907,828 5,440 1,405 1,717,959 3,293,213
92.93 908,430 5,440 1,378 1,721,030 3,228,356
92.92 908,417 5,440 1,365 1,720,160 3,197,565
92.93 912,816 5,440 1,378 1,719,732 3,209,248
92.93 911,754 5,440 1,387 1,720,489 3,324,458
92.93 910,501 5,440 1,358 1,719,102 3,166,563
92.94 912,738 5,440 1,317 1,718,719 3,020,374
92.92 912,995 5,440 1,421 1,719,267 3,348,046
92.93 912,602 5,440 1,334 1,718,098 3,120,212
92.93 912,207 5,440 1,347 1,719,068 3,158,549
92.93 913,369 5,440 1,336 1,719,704 3,035,597
92.92 908,862 5,440 1,351 1,719,208 3,207,424
92.93 909,420 5,440 1,382 1,719,438 3,248,156
92.93 908,125 5,440 1,362 1,719,106 3,201,921
92.93 907,483 5,440 1,315 1,717,599 3,059,935
92.93 905,470 5,440 1,342 1,719,344 3,120,826
92.93 913,189 5,440 1,394 1,719,186 3,235,963
92.93 909,965 5,440 1,383 1,718,540 3,249,418

Average 92.93 909,784 5,440 1,361 1,719,026 3,186,878
Variance 2.44E-05 4,355,968 0 919 903,875 6,876,350,77

0
std dev 0 2087 0 30 951 82924

107

Sample

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Time

Sec.

Work

Kilo-
Whetstones

Detect
Message

s
Sent

Messages

Received

Bytes Bytes

Sent Received

0 967,860 609 2,720 2,139,347 816,902
0 969,114 609 2,720 2,139,052 817,562
0 968,895 612 2,720 2,149,856 815,847
0 969,505 597 2,720 2,099,620 816,026
0 967,881 623 2,720 2,183,841 815,905
0 969,844 623 2,720 2,191,876 815,234
0 967,739 643 2,720 2,255,008 816,047
0 969,035 632 2,720 2,213,479 815,780
0 967,331 609 2,720 2,133,246 815,642
0 966,925 643 2,720 2,260,495 816,099
0 968,147 587 2,720 2,054,101 816,343
0 968,916 605 2,720 2,125,097 816,584
0 968,077 641 2,720 2,256,241 815,366
0 969,994 607 2,720 2,131,274 815,849
0 969,115 614 2,720 2,152,732 814,559
0 968,243 598 2,720 2,093,913 815,493
0 968,357 648 2,720 2,276,068 815,477
0 969,747 595 2,720 2,089,478 816,510
0 967,663 616 2,720 2,156,847 816,450
0 968,647 575 2,720 2,016,793 815,718
0 968,059 642 2,720 2,253,705 815,961
0 968,520 631 2,720 2,213,249 815,290
0 969,410 573 2,720 2,013,320 817,569
0 969,958 634 2,720 2,231,761 815,298
0 968,302 609 2,720 2,139,430 815,688
0 969,657 617 2,720 2,167,783 815,370
0 967,534 615 2,720 2,162,390 814,377
0 967,103 624 2,720 2,195,646 817,230
0 969,325 589 2,720 2,066,123 814,812
0 968,224 604 2,720 2,123,249 815,364
0 969,459 605 2,720 2,125,289 814,233
0 967,721 624 2,720 2,188,345 816,365
0 968,211 622 2,720 2,184,035 815,886
0 967,027 653 2,720 2,296,915 816,192
0 968,491 648 2,720 2,269,414 815,997
0 967,987 625 2,720 2,196,295 816,609

108

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

0 968,214 604 2,720 2,118,720 814,783
0 967,201 592 2,720 2,075,610 816,483
0 967,267 589 2,720 2,067,811 816,074
0 969,012 599 2,720 2,103,921 815,514
0 969,007 623 2,720 2,187,772 816,581
0 967,660 574 2,720 2,014,336 815,653
0 969,781 617 2,720 2,162,882 815,397
0 968,252 613 2,720 2,153,167 816,150
0 967,483 649 2,720 2,280,983 816,116
0 967,440 655 2,720 2,301,536 816,243
0 968,650 634 2,720 2,224,440 815,991
0 969,165 599 2,720 2,100,463 815,785
0 968,406 614 2,720 2,156,007 816,459
0 966,706 639 2,720 2,246,986 815,588
0 967,810 626 2,720 2,198,270 816,941
0 967,674 617 2,720 2,170,491 816,659
0 969,003 610 2,720 2,141,855 815,908
0 967,651 605 2,720 2,119,660 816,119
0 966,927 586 2,720 2,051,618 815,769
0 967,287 577 2,720 2,022,599 815,447
0 968,882 610 2,720 2,140,108 815,433
0 967,958 603 2,720 2,116,654 814,720
0 967,493 639 2,720 2,244,263 815,726
0 968,557 613 2,720 2,152,850 816,756
0 968,853 606 2,720 2,121,545 816,537
0 967,601 607 2,720 2,133,171 816,601
0 967,418 623 2,720 2,194,204 814,497
0 968,882 598 2,720 2,103,552 815,697
0 968,476 642 2,720 2,250,124 815,947
0 966,676 639 2,720 2,243,708 815,683
0 967,748 597 2,720 2,093,737 815,932
0 967,447 641 2,720 2,251,128 815,163
0 968,376 609 2,720 2,135,198 816,422
0 969,271 630 2,720 2,208,450 815,525
0 968,765 635 2,720 2,226,884 816,845
0 970,225 659 2,720 2,313,910 816,209
0 969,714 610 2,720 2,140,301 815,149
0 968,060 645 2,720 2,263,110 817,246
0 969,181 618 2,720 2,169,015 816,237
0 967,750 604 2,720 2,125,509 816,657
0 968,728 603 2,720 2,116,663 816,198
0 968,138 617 2,720 2,161,699 816,017

109

79 0 969,077 673 2,720 2,362,863 815,828
80 0 968,052 541 2,720 1,898,144 815,388
81 0 969,984 635 2,720 2,227,705 814,544
82 0 967,115 586 2,720 2,059,820 816,150
83 0 968,240 626 2,720 2,199,494 815,942
84 0 968,419 621 2,720 2,178,676 815,743
85 0 966,553 611 2,720 2,147,854 815,843
86 0 967,977 636 2,720 2,237,061 815,046
87 0 968,077 625 2,720 2,194,880 816,778
88 0 968,530 618 2,720 2,171,056 816,299
89 0 967,768 616 2,720 2,161,025 816,870
90 0 968,992 665 2.720 2,332,101 817,174
91 0 968,974 605 2,720 2,129,122 815,901
92 0 969,113 569 2,720 1,991,398 816,705
93 0 968,536 655 2,720 2,296,613 815,526
94 0 967,947 602 2,720 2,111,946 815,701
95 0 969,312 610 2,720 2,143,728 816,223
96 0 967,826 561 2,720 1,968,391 816,898
97 0 969,540 634 2,720 2,221,693 816,378
98 0 968,238 630 2,720 2,212,557 816,721
99 0 969,687 623 2,720 2,186,857 816,800
100 0 966,898 587 2,720 2,058,513 814,473
101 0 968,157 597 2,720 2,097,492 814,929
102 0 968,523 619 2,720 2,169,853 815,223
103 0 968,855 628 2,720 2,209,622 815,884

Average 0.00 968,361 616 2,720 2,162,317 815,936
Variance 0 735,880 525 0 6,563,514,7

76
491,281

std dev 0 858 23 0 81016 701

110

Sample Time

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

FP
Work Message Message Bytes Bytes

s s
Sec. Kilo-Whetstones Sent Received Sent Received

0 887,515 754 2,720 1,059,819 815,923
0 887,030 722 2,720 1,013,338 815,687
0 887,382 727 2,720 1,021,757 815,556
0 887,248 717 2,720 1,007,414 814,844
0 887,703 755 2,720 1,059,457 815,824
0 886,247 781 2,720 1,097,719 816,108
0 885,869 742 2,720 1,041,685 816,107
0 884,721 747 2,720 1,048,839 816,271
0 887,758 756 2,720 1,063,087 816,340
0 887,602 737 2,720 1,035,221 816,787
0 887,343 801 2,720 1,123,590 814,884
0 887,118 750 2,720 1,050,572 816,690
0 886,285 756 2,720 1,066,135 815,911
0 884,872 768 2,720 1,075,743 815,771
0 887,056 763 2,720 1,072,398 816,581
0 885,443 743 2,720 1,043,474 816,485
0 887,015 737 2,720 1,033,547 815,436
0 886,443 703 2,720 986,008 816,206
0 887,982 761 2,720 1,067,512 816,420
0 887,737 738 2,720 1,037,326 816,800
0 886,123 707 2,720 993,759 816,861
0 886,038 744 2,720 1,045,106 815,940
0 884,761 744 2,720 1,044,964 816,743
0 886,031 736 2,720 1,032,146 815,833
0 886,092 748 2,720 1,051,341 816,906
0 884,893 742 2,720 1,041,047 816,595
0 886,373 745 2,720 1,048,631 816,612
0 887,582 723 2,720 1,011,942 814,505
0 887,656 759 2,720 1,066,250 814,981
0 888,279 752 2,720 1,057,758 816,145
0 886,932 701 2,720 986,533 815,083
0 886,700 729 2,720 1,024,408 815,587
0 887,984 754 2,720 1,059,773 816,033
0 887,166 751 2,720 1,054,583 816,507
0 885,652 743 2,720 1,045,742 815,938
0 887,282 716 2,720 1,006,242 815,643

111

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

0 886,591 695 2,720 976,921 815,504
0 887,254 767 2,720 1,074,808 817,057
0 887,196 750 2,720 1,055,656 815,714
0 887,279 727 2,720 1,021,997 815,465
0 886,336 752 2,720 1,057,544 814,645
0 886,302 794 2,720 1,116,462 816,719
0 888,558 740 2,720 1,038,481 815,435
0 887,130 746 2,720 1,044,872 815,988
0 887,402 798 2,720 1,120,747 817,024
0 887,320 744 2,720 1,044,293 815,326
0 885,892 743 2,720 1,044,484 816,516
0 887,819 703 2,720 987,502 815,759
0 886,387 765 2,720 1,073,634 816,435
0 886,709 736 2,720 1,033,285 816,307
0 885,825 772 2,720 1,085,363 816,089
0 885,621 750 2,720 1,053,825 816,174
0 886,179 704 2,720 989,778 816,469
0 886,188 775 2,720 1,088,388 816,307
0 885,991 763 2,720 1,072,246 816,948
0 887,927 748 2,720 1,049,616 816,946
0 886,683 751 2,720 1,055,995 815,960
0 886,928 690 2,720 967,770 815,605
0 886,161 725 2,720 1,017,235 815,815
0 886,205 708 2,720 994,297 817,114
0 886,386 760 2,720 1,066,417 815,755
0 887,942 758 2,720 1,066,308 816,654
0 887,723 753 2,720 1,057,704 816,062
0 886,459 708 2,720 995,617 815,082
0 886,052 688 2,720 965,977 814,882
0 886,432 751 2,720 1,055,365 816,213
0 885,720 753 2,720 1,057,665 815,570
0 886,577 713 2,720 1,003,691 815,247
0 887,444 758 2,720 1,066,274 815,211
0 885,646 749 2,720 1,053,129 816,573
0 887,722 732 2,720 1,030,055 814,574
0 884,567 765 2,720 1,073,133 815,673
0 886,186 792 2,720 1,113,253 815,589
0 887,946 732 2,720 1,028,887 815,823
0 887,783 740 2,720 1,042,012 817,460
0 884,837 732 2,720 1,028,588 817,205
0 887,288 722 2,720 1,013,726 816,775
0 886,361 757 2,720 1,064,229 816,696

112

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

0 885,433 726 2,720 1,018,695 816,229
0 887,299 756 2,720 1,062,495 816,004
0 885,973 776 2,720 1,090,191 816,632
0 886,893 784 2,720 1,099,501 815,913

0 886,270 750 2,720 1,054,275 815,498

0 886,625 744 2,720 1,045,316 815,015

0 886,478 751 2,720 1,055,064 817,447

0 885,947 769 2,720 1,078,632 815,873

0 887,222 753 2,720 1,055,524 817,212

0 885,723 747 2,720 1,048,349 816,821
0 886,735 762 2,720 1,070,271 815,822
0 886,279 722 2,720 1,014,549 816,275
0 886,047 753 2,720 1,059,169 816,161

0 887,315 748 2,720 1,050,048 814,974
0 886,694 766 2,720 1,074,169 816,701
0 884,943 732 2,720 1,029,610 815,357
0 886,433 737 2,720 1,036,373 815,805
0 888,233 775 2,720 1,088,582 815,766
0 887,956 717 2,720 1,007,347 815,790
0 885,646 752 2,720 1,057,711 815,677
0 885,840 739 2,720 1,036,856 815,266
0 887,529 728 2,720 1,022,462 816,086
0 886,783 745 2,720 1,044,806 817,375
0 886,614 775 2,720 1,088,414 816,923
0 888,059 755 2,720 1,061,924 815,616

Average 0.00 886,678 745 2,720 1,046,334 816,050
Variance 0 807,717 518 0 1,018,850,6

00
455,702

std dev 0 899 23 0 31919 675

113

THIS PAGE INTENTIONALLY LEFT BLANK

114

LIST OF REFERENCES

[CARF99] Paul Carff, Analysis on Resource Usage Information
Granularity Required for Optimal Scheduling,
Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1999.

[CURN76] H.J.Curnow and B.A.Wichmann: "A Synthetic
Benchmark," The Computer Journal, 19,1 (1976), pp.
43-49 (Whetstone).

[DHRY84] R. P.Weicker "Dhrystone: A Synthetic System
Programming Benchmark", Comm. ACM, Vol 27 No.
Oct 1984, pp. 1013-1030.

10

[EAD00] Teledyne Brown Engineering, "EADSIM Overview,"
[http://www.eadsim.com/EADSIMBrochure.html], Oct
2000.

[BART89] Nelson Weiderman "HARTSTONE: Synthetic Benchmark
Requirements for Hard Real-Time Applications,"
Technical Report, CMU/SEI-89-TR-23 ESD-89-TR-31,
Carnegie Mellon University, Pittsburgh, PA,June
1989.

[HART90] Patrick Donohoe, Ruth Shapiro and Nelson Weilerman,
"Hartstone Benchmark User's Guide, Version 1.0,"
Users Guide CMU/SEI-90-UG-1 ESD-90-TR-5, Carnegie
Mellon University, Pittsburgh, PA, March 1990.

[HART92] N. Weilderman and N. Kamenoff, "Hartstone
Uniprocessor Benchmark: Definitions and Experiments
for Real-Time Systems," The Journal of Real-Time
Systems, 1992, pp. 353-382.

[HENS99] Debra A. Hensgen, Taylor Kidd, David St. Johns,
Mathew Schnaidt, Howard Jay Siegel, Tracy D. Braun,
Muthucumaru Maheswaran, Shoukat Ali, Jong-Kook Kim,
Cynthia Irvine, Tim Levin, Richard F. Freund, Matt
Kussow, Michael Godfrey, Alpay Duman, Paul Carff,
Shirley Kidd, Viktor Prasanna, Prashanth Bhat and

115

[LUI73]

Ammar Alhusaini, "An Overview of MSHN: The
Management System for Heterogeneous Networks,"
Proceedings Eighth Heterogeneous Computing Workshop
(HCW 99), San Juan, Puerto Rico, IEEE Computer
Society, Los Alamitos, California, 1999.

Lui C.L. and Layland J.W. , "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment," Journal of
the Association of Computing Machinery, 20(1): 46-61, January
1973.

[OBJFAQ] WWW, Comp.Object FAQ, Version: 1.0.9, Date: 4/2/96,
Question 1.15: "What is the Difference Between
Object-Based And Object-Oriented?," www.comp.faqs.

[PETE81] J. L. Peterson, Petri Net Theory and the Modeling
of Systems, Prentice-Hall, Englewood Cliffs N.J.,
1981.

[PORT99] N. Wayne Porter, Resource Usage for Adaptive C4I
Models in a Heterogeneous Computing Environment,
Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1999.

[SCHN99] Matthew C. L. Schnaidt, Design, Implementation, and
Testing of MSHN's Application Resource Monitoring
Library, Master's Thesis, Naval Postgraduate
School, Monterey, California, September 1997.

[STEV98] W. Richard Stevens, UNIX NETWORK PROGRAMMING,
Volume 1, Second Edition, Prentice Hall, Upper
Saddle River, NJ, 1998.

[T3] HiPer-D Group technical report, "High Performance
Distributed Computing Program (HiPer-D)
Engineering Testbed Three (T3) Report," Code B35,
Dahlgren VA, December 31, 1998.

[UNIX97] Unix Manual Page: hosts.equiv(4!
23 1997.

Solaris 2.7, June

[WEIC90] Reinhold P. Weicker, "An Overview of Common
Benchmarks," IEEE Computer, 23(12): pp. 65-75,
December 1990.

116

[WELC98] Lonnie R. Welch and Michael Masters, "Towards a
Taxonomy or Real-Time Mission-Critical Systems,"
Presented at Real-Time Mission Critical Systems
(RTMCS) Workshop, Scottsdale, AZ, Nov. 1999.

[WELCH98] Lonnie R. Welch, Behrooz A. Shirazi, Binoy
Ravindran, Charles Cavanaugh, Barath Yanamula,
Russ Brucks and Eui-nam Huh, "DynBench: A Dynamic
Benchmark Suite for Distributed Real-Time Systems,"
IPPS/SPDP Workshop, San Juan, Puerto Rico, pp.
1335-1349, May 1999.

117

THIS PAGE IS INTENTIONALLY BLANK

118

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8752 John J. Knigman Rd. STE 0 944
Ft. Belvoir, VA 22060-6218

2 . Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3 . Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Cynthia Irvine, Code CS/Ic 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5193

5. Professor Douglas J. Fouts, Code EC/Fs 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93 943-5121

6. Professor Jon Butler, Code EC/WT 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

7 . Dr. Debra Hensgen, 1
OpenTV, Inc.
401 East Middlefield Road
Mountain View, CA 94 043

8 . Michael W. Masters, Code B35 1
Naval Surface Warfare Center, Dahlgren Division
Dahlgren, VA 22448-5100

9. Robert D. Harrison, Code B35 _ 1
Naval Surface Warfare Center, Dahlgren Division
Dahlgren, VA 22448-5100

119

10. Timothy Drake, Code B35 3
Naval Surface Warfare Center, Dahigren Division
Dahlgren, VA 22448-5100

120

